Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Francisco bought 1212 plants to arrange along the border of his garden. How many distinct arrangements can he make if the plants are comprised of 66 tulips, 33 roses, and 33 daisies?

Full solution

Q. Francisco bought 1212 plants to arrange along the border of his garden. How many distinct arrangements can he make if the plants are comprised of 66 tulips, 33 roses, and 33 daisies?
  1. Calculate Factorials: We need to calculate the number of distinct arrangements Francisco can make with his 1212 plants, which include 66 tulips, 33 roses, and 33 daisies. This is a permutation problem involving identical items. The formula for the number of distinct arrangements (permutations) of nn items where there are n1n_1 identical items of one type, n2n_2 identical items of another type, and so on, is given by:\newlineP=n!(n1!n2!nk!)P = \frac{n!}{(n_1! \cdot n_2! \cdot \ldots \cdot n_k!)}\newlinewhere n!n! represents the factorial of nn, and n1!n_1!, 6600, ..., 6611 represent the factorials of the number of identical items.
  2. Calculate Factorials for Each Group: First, let's calculate the factorial of the total number of plants, which is 12!12! (1212 factorial).\newline12!=12×11×10×9×8×7×6×5×4×3×2×112! = 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1
  3. Apply Permutation Formula: Next, we calculate the factorial for each group of identical plants:\newlineFor the 66 tulips, we have 6!6! (66 factorial).\newline6!=6×5×4×3×2×16! = 6 \times 5 \times 4 \times 3 \times 2 \times 1\newlineFor the 33 roses, we have 3!3! (33 factorial).\newline3!=3×2×13! = 3 \times 2 \times 1\newlineFor the 33 daisies, we have 3!3! (33 factorial).\newline3!=3×2×13! = 3 \times 2 \times 1
  4. Simplify Expression: Now, we apply the formula to find the number of distinct arrangements: \newlineP=12!6!×3!×3!P = \frac{12!}{6! \times 3! \times 3!}\newlineWe already calculated the factorials, so we can substitute them into the formula: \newlineP=(12×11×10×9×8×7×6×5×4×3×2×1)((6×5×4×3×2×1)×(3×2×1)×(3×2×1))P = \frac{(12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1)}{((6 \times 5 \times 4 \times 3 \times 2 \times 1) \times (3 \times 2 \times 1) \times (3 \times 2 \times 1))}
  5. Perform Division: We can simplify the expression by canceling out common factors in the numerator and the denominator:\newlineP = (12×11×10×9×8×7)/((3×2×1)×(3×2×1))(12 \times 11 \times 10 \times 9 \times 8 \times 7) / ((3 \times 2 \times 1) \times (3 \times 2 \times 1))\newlineP = (12×11×10×9×8×7)/(6×6)(12 \times 11 \times 10 \times 9 \times 8 \times 7) / (6 \times 6)\newlineP = (12×11×10×9×8×7)/36(12 \times 11 \times 10 \times 9 \times 8 \times 7) / 36
  6. Perform Division: We can simplify the expression by canceling out common factors in the numerator and the denominator:\newlineP=12×11×10×9×8×7(3×2×1)×(3×2×1)P = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{(3 \times 2 \times 1) \times (3 \times 2 \times 1)}\newlineP=12×11×10×9×8×76×6P = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 6}\newlineP=12×11×10×9×8×736P = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{36}Now, we perform the division to get the final answer:\newlineP=12×11×10×9×8×736P = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{36}\newlineP=2×11×10×9×8×71P = \frac{2 \times 11 \times 10 \times 9 \times 8 \times 7}{1}\newlineP=11×10×9×8×7P = 11 \times 10 \times 9 \times 8 \times 7\newlineP=55440P = 55440

More problems from Experimental probability