Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
For the function
f
(
x
)
=
x
1
7
+
6
4
f(x)=\frac{x^{\frac{1}{7}}+6}{4}
f
(
x
)
=
4
x
7
1
+
6
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
4
x
)
7
−
6
f^{-1}(x)=(4 x)^{7}-6
f
−
1
(
x
)
=
(
4
x
)
7
−
6
\newline
f
−
1
(
x
)
=
(
4
x
−
6
)
7
f^{-1}(x)=(4 x-6)^{7}
f
−
1
(
x
)
=
(
4
x
−
6
)
7
\newline
f
−
1
(
x
)
=
(
4
(
x
−
6
)
)
7
f^{-1}(x)=(4(x-6))^{7}
f
−
1
(
x
)
=
(
4
(
x
−
6
)
)
7
\newline
f
−
1
(
x
)
=
4
(
x
−
6
)
7
f^{-1}(x)=4(x-6)^{7}
f
−
1
(
x
)
=
4
(
x
−
6
)
7
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
For the function
f
(
x
)
=
x
1
7
+
6
4
f(x)=\frac{x^{\frac{1}{7}}+6}{4}
f
(
x
)
=
4
x
7
1
+
6
, find
f
−
1
(
x
)
f^{-1}(x)
f
−
1
(
x
)
.
\newline
f
−
1
(
x
)
=
(
4
x
)
7
−
6
f^{-1}(x)=(4 x)^{7}-6
f
−
1
(
x
)
=
(
4
x
)
7
−
6
\newline
f
−
1
(
x
)
=
(
4
x
−
6
)
7
f^{-1}(x)=(4 x-6)^{7}
f
−
1
(
x
)
=
(
4
x
−
6
)
7
\newline
f
−
1
(
x
)
=
(
4
(
x
−
6
)
)
7
f^{-1}(x)=(4(x-6))^{7}
f
−
1
(
x
)
=
(
4
(
x
−
6
)
)
7
\newline
f
−
1
(
x
)
=
4
(
x
−
6
)
7
f^{-1}(x)=4(x-6)^{7}
f
−
1
(
x
)
=
4
(
x
−
6
)
7
Write function as
y
y
y
:
To find the inverse function, we first write the function as
y
y
y
:
y
=
(
x
1
7
+
6
)
4
y = \frac{{(x^{\frac{1}{7}} + 6)}}{4}
y
=
4
(
x
7
1
+
6
)
Swap x and y:
Next, we swap x and y to begin solving for the inverse function:
\newline
x
=
y
1
7
+
6
4
x = \frac{y^{\frac{1}{7}} + 6}{4}
x
=
4
y
7
1
+
6
Eliminate denominator:
Multiply both sides by
4
4
4
to eliminate the denominator:
\newline
4
x
=
y
1
7
+
6
4x = y^{\frac{1}{7}} + 6
4
x
=
y
7
1
+
6
Isolate term with y:
Subtract
6
6
6
from both sides to isolate the term with y:
\newline
4
x
−
6
=
y
1
7
4x - 6 = y^{\frac{1}{7}}
4
x
−
6
=
y
7
1
Eliminate exponent on y:
Raise both sides to the power of
7
7
7
to eliminate the exponent on y:
(
4
x
−
6
)
7
=
(
y
1
7
)
7
(4x - 6)^7 = (y^{\frac{1}{7}})^7
(
4
x
−
6
)
7
=
(
y
7
1
)
7
Simplify to get
y
y
y
:
Simplify the right side to get
y
y
y
by itself:
(
4
x
−
6
)
7
=
y
(4x - 6)^7 = y
(
4
x
−
6
)
7
=
y
Inverse function:
Now we have the inverse function:
f
−
1
(
x
)
=
(
4
x
−
6
)
7
f^{-1}(x) = (4x - 6)^7
f
−
1
(
x
)
=
(
4
x
−
6
)
7
More problems from Find derivatives of using multiple formulae
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant