Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the exact coordinates of the turning points on the curve y=sin3xcosxy=\sin^3 x\cos x for 00

Full solution

Q. Find the exact coordinates of the turning points on the curve y=sin3xcosxy=\sin^3 x\cos x for 00
  1. Find Derivative and Critical Points: To find the turning points, we need to find the derivative of yy with respect to xx and set it equal to zero to find the critical points.
  2. Apply Product and Chain Rule: The derivative of y=sin3(x)cos(x)y = \sin^3(x)\cos(x) can be found using the product rule and the chain rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  3. Solve for Critical Points: Let's denote u=sin3(x)u = \sin^3(x) and v=cos(x)v = \cos(x). Then, using the product rule, we have:\newlinedydx=dudxv+udvdx\frac{dy}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}
  4. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).
  5. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x))
  6. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x))Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x)
  7. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x))Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x)To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00
  8. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x))Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x)To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22
  9. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55
  10. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.
  11. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11
  12. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get:\newlineu=sin3(x)u = \sin^3(x)22\newlineu=sin3(x)u = \sin^3(x)33
  13. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get:\newlineu=sin3(x)u = \sin^3(x)22\newlineu=sin3(x)u = \sin^3(x)33 Taking the square root of both sides, we get:\newlineu=sin3(x)u = \sin^3(x)44
  14. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get:\newlineu=sin3(x)u = \sin^3(x)22\newlineu=sin3(x)u = \sin^3(x)33 Taking the square root of both sides, we get:\newlineu=sin3(x)u = \sin^3(x)44 The values of xx that satisfy u=sin3(x)u = \sin^3(x)44 within the interval dvdx\frac{dv}{dx}88 are u=sin3(x)u = \sin^3(x)88 (for u=sin3(x)u = \sin^3(x)99) and xx00 (for xx11).
  15. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x). Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88. Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get:\newlineu=sin3(x)u = \sin^3(x)22\newlineu=sin3(x)u = \sin^3(x)33 Taking the square root of both sides, we get:\newlineu=sin3(x)u = \sin^3(x)44 The values of xx that satisfy u=sin3(x)u = \sin^3(x)44 within the interval dvdx\frac{dv}{dx}88 are u=sin3(x)u = \sin^3(x)88 (for u=sin3(x)u = \sin^3(x)99) and xx00 (for xx11). Now we have the xx-values of the turning points: xx33 and xx44. To find the exact coordinates, we need to substitute these xx-values back into the original equation xx66 to find the corresponding xx77-values.
  16. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x). Substituting the derivatives into the product rule formula, we get: dydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have: dydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero: dvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation: dvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points: dvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88. Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as: u=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get: u=sin3(x)u = \sin^3(x)22 u=sin3(x)u = \sin^3(x)33 Taking the square root of both sides, we get: u=sin3(x)u = \sin^3(x)44 The values of xx that satisfy u=sin3(x)u = \sin^3(x)44 within the interval dvdx\frac{dv}{dx}88 are u=sin3(x)u = \sin^3(x)88 (for u=sin3(x)u = \sin^3(x)99) and xx00 (for xx11). Now we have the xx-values of the turning points: xx33 and xx44. To find the exact coordinates, we need to substitute these xx-values back into the original equation xx66 to find the corresponding xx77-values. Substituting xx88 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00. Substituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)11 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)33. Substituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)44 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)66. Substituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)77 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00. Substituting v=cos(x)v = \cos(x)00 into xx66, we get v=cos(x)v = \cos(x)22. Substituting v=cos(x)v = \cos(x)33 into xx66, we get v=cos(x)v = \cos(x)55. Substituting v=cos(x)v = \cos(x)66 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00.
  17. Calculate Turning Points: Now we need to find dudx\frac{du}{dx} and dvdx\frac{dv}{dx}. The derivative of u=sin3(x)u = \sin^3(x) with respect to xx is 3sin2(x)cos(x)3\sin^2(x)\cos(x) by using the chain rule. The derivative of v=cos(x)v = \cos(x) with respect to xx is sin(x)-\sin(x).Substituting the derivatives into the product rule formula, we get:\newlinedydx=3sin2(x)cos(x)cos(x)+sin3(x)(sin(x))\frac{dy}{dx} = 3\sin^2(x)\cos(x) \cdot \cos(x) + \sin^3(x) \cdot (-\sin(x)) Simplifying the expression, we have:\newlinedydx=3sin2(x)cos2(x)sin4(x)\frac{dy}{dx} = 3\sin^2(x)\cos^2(x) - \sin^4(x) To find the critical points, we set the derivative equal to zero:\newlinedvdx\frac{dv}{dx}00 We can factor out dvdx\frac{dv}{dx}11 from the equation:\newlinedvdx\frac{dv}{dx}22 Setting each factor equal to zero gives us the possible xx-values for the turning points:\newlinedvdx\frac{dv}{dx}44 or dvdx\frac{dv}{dx}55 Solving dvdx\frac{dv}{dx}44 gives us dvdx\frac{dv}{dx}77 within the interval dvdx\frac{dv}{dx}88.Solving dvdx\frac{dv}{dx}55, we can use the Pythagorean identity u=sin3(x)u = \sin^3(x)00 to rewrite the equation as:\newlineu=sin3(x)u = \sin^3(x)11 Simplifying the equation, we get:\newlineu=sin3(x)u = \sin^3(x)22\newlineu=sin3(x)u = \sin^3(x)33 Taking the square root of both sides, we get:\newlineu=sin3(x)u = \sin^3(x)44 The values of xx that satisfy u=sin3(x)u = \sin^3(x)44 within the interval dvdx\frac{dv}{dx}88 are u=sin3(x)u = \sin^3(x)88 (for u=sin3(x)u = \sin^3(x)99) and xx00 (for xx11).Now we have the xx-values of the turning points: xx33 and xx44. To find the exact coordinates, we need to substitute these xx-values back into the original equation xx66 to find the corresponding xx77-values.Substituting xx88 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00.\newlineSubstituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)11 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)33.\newlineSubstituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)44 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)66.\newlineSubstituting 3sin2(x)cos(x)3\sin^2(x)\cos(x)77 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00.\newlineSubstituting v=cos(x)v = \cos(x)00 into xx66, we get v=cos(x)v = \cos(x)22.\newlineSubstituting v=cos(x)v = \cos(x)33 into xx66, we get v=cos(x)v = \cos(x)55.\newlineSubstituting v=cos(x)v = \cos(x)66 into xx66, we get 3sin2(x)cos(x)3\sin^2(x)\cos(x)00.The exact coordinates of the turning points are therefore:\newlinev=cos(x)v = \cos(x)99 and $(\(2\)\pi, \(0\)).

More problems from Find derivatives of exponential functions