Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
tan((19 pi)/(12)) exactly using an angle addition or subtraction formula.
[Hint: This diagram of special trigonometry. values may help.].
Choose 1 answer:
(A) 
(3-sqrt3)/(3+sqrt3)
(B) 
(3-sqrt3)/(3-sqrt3)
(c) 
(-3+sqrt3)/(3+sqrt3)
(D) 
(3+sqrt3)/(-3+sqrt3)

Find tan(19π12) \tan \left(\frac{19 \pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help.].\newlineChoose 11 answer:\newline(A) 333+3 \frac{3-\sqrt{3}}{3+\sqrt{3}} \newline(B) 3333 \frac{3-\sqrt{3}}{3-\sqrt{3}} \newline(C) 3+33+3 \frac{-3+\sqrt{3}}{3+\sqrt{3}} \newline(D) 3+33+3 \frac{3+\sqrt{3}}{-3+\sqrt{3}}

Full solution

Q. Find tan(19π12) \tan \left(\frac{19 \pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help.].\newlineChoose 11 answer:\newline(A) 333+3 \frac{3-\sqrt{3}}{3+\sqrt{3}} \newline(B) 3333 \frac{3-\sqrt{3}}{3-\sqrt{3}} \newline(C) 3+33+3 \frac{-3+\sqrt{3}}{3+\sqrt{3}} \newline(D) 3+33+3 \frac{3+\sqrt{3}}{-3+\sqrt{3}}
  1. Express as Sum/Difference: We need to express (19π/12)(19\pi/12) as a sum or difference of angles for which we know the exact trigonometric values. The angles that are commonly used and for which we have exact values are π/6\pi/6, π/4\pi/4, and π/3\pi/3 (and their multiples). We can write (19π/12)(19\pi/12) as the sum of (16π/12)(16\pi/12) and (3π/12)(3\pi/12), which simplifies to (4π/3)+(π/4)(4\pi/3) + (\pi/4).
  2. Apply Angle Addition Formula: Now we will use the angle addition formula for tangent, which is tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}. Let α=4π3\alpha = \frac{4\pi}{3} and β=π4\beta = \frac{\pi}{4}.
  3. Find Tangent Values: We need to find the exact values for tan(4π3)tan(\frac{4\pi}{3}) and tan(π4)tan(\frac{\pi}{4}). From the unit circle, we know that tan(π4)=1tan(\frac{\pi}{4}) = 1. For tan(4π3)tan(\frac{4\pi}{3}), we know that 4π3\frac{4\pi}{3} is in the third quadrant where tangent is positive, and tan(4π3)tan(\frac{4\pi}{3}) is the same as tan(π3)tan(\frac{\pi}{3}) because they differ by an exact circle (2π)(2\pi). Since tan(π3)=3tan(\frac{\pi}{3}) = \sqrt{3}, tan(4π3)=3tan(\frac{4\pi}{3}) = -\sqrt{3} (because it's in the third quadrant where tangent is negative).
  4. Substitute Values: Now we substitute these values into the angle addition formula: $\tan\left(\frac{\(19\)\pi}{\(12\)}\right) = \tan\left(\frac{\(4\)\pi}{\(3\)} + \frac{\pi}{\(4\)}\right) = \frac{\tan\left(\frac{\(4\)\pi}{\(3\)}\right) + \tan\left(\frac{\pi}{\(4\)}\right)}{\(1\) - \tan\left(\frac{\(4\)\pi}{\(3\)}\right)\tan\left(\frac{\pi}{\(4\)}\right)} = \frac{(-\sqrt{\(3\)}) + \(1\)}{\(1\) - (-\sqrt{\(3\)})(\(1\))}.
  5. Simplify Expression: Simplify the expression: \(\tan\left(\frac{19\pi}{12}\right) = \frac{(-\sqrt{3}) + 1}{1 + \sqrt{3}}\).
  6. Rationalize Denominator: To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \((1 - \sqrt{3})\).
  7. Perform Multiplication: Perform the multiplication: \(\left((-\sqrt{3} + 1) \times (1 - \sqrt{3})\right) / \left((1 + \sqrt{3}) \times (1 - \sqrt{3})\right)\).
  8. Use Difference of Squares: Use the difference of squares formula for the denominator: \((1 - \sqrt{3})^2 = 1^2 - 2\cdot 1\cdot \sqrt{3} + (\sqrt{3})^2 = 1 - 2\sqrt{3} + 3\).
  9. Expand Numerator: Simplify the denominator: \(1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3}\).
  10. Final Simplification: Expand the numerator: \((-\sqrt{3} + 1) \times (1 - \sqrt{3}) = -\sqrt{3} + \sqrt{3}^2 - 1 + \sqrt{3} = -1 + 3 - \sqrt{3} = 2 - \sqrt{3}.\)
  11. Correct Division: Now we have: \(\tan\left(\frac{19\pi}{12}\right) = \frac{2 - \sqrt{3}}{4 - 2\sqrt{3}}\).
  12. Correct Division: Now we have: \(\tan\left(\frac{19\pi}{12}\right) = \frac{2 - \sqrt{3}}{4 - 2\sqrt{3}}\).To simplify the fraction, we divide both the numerator and the denominator by \(2\): \(\frac{2 - \sqrt{3}}{2} / \frac{4 - 2\sqrt{3}}{2} = \frac{1 - \sqrt{3}/2}{2 - \sqrt{3}}\).
  13. Correct Division: Now we have: \(\tan\left(\frac{19\pi}{12}\right) = \frac{2 - \sqrt{3}}{4 - 2\sqrt{3}}\).To simplify the fraction, we divide both the numerator and the denominator by \(2\): \(\frac{2 - \sqrt{3}}{2} / \frac{4 - 2\sqrt{3}}{2} = \frac{1 - \sqrt{3}/2}{2 - \sqrt{3}}\).We made a mistake in the previous step by dividing incorrectly. We should divide both the numerator and the denominator by \(2\) correctly: \(\frac{2 - \sqrt{3}}{2} / \frac{4 - 2\sqrt{3}}{2} = \frac{1 - \sqrt{3}/2}{2 - \sqrt{3}}\).

More problems from Domain and range of relations