Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(h rarr0)(2tan((pi)/(3)+h)-2tan((pi)/(3)))/(h).
Choose 1 answer:
(A) 1
(B) 2
(C) 8
(D) The limit doesn't exist

Find limh02tan(π3+h)2tan(π3)h \lim _{h \rightarrow 0} \frac{2 \tan \left(\frac{\pi}{3}+h\right)-2 \tan \left(\frac{\pi}{3}\right)}{h} .\newlineChoose 11 answer:\newline(A) 11\newline(B) 22\newline(C) 88\newline(D) The limit doesn't exist

Full solution

Q. Find limh02tan(π3+h)2tan(π3)h \lim _{h \rightarrow 0} \frac{2 \tan \left(\frac{\pi}{3}+h\right)-2 \tan \left(\frac{\pi}{3}\right)}{h} .\newlineChoose 11 answer:\newline(A) 11\newline(B) 22\newline(C) 88\newline(D) The limit doesn't exist
  1. Identify Problem: Identify the limit problem and recognize it as a derivative problem at a specific point.
  2. Use Derivative Definition: Use the definition of the derivative f(a)=limh0f(a+h)f(a)hf'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h} for the function f(x)=2tan(x)f(x) = 2\tan(x) at x=π3x = \frac{\pi}{3}.
  3. Plug in Values: Plug in the values into the derivative formula: f(π3)=limh0(2tan(π3+h)2tan(π3)h).f'(\frac{\pi}{3}) = \lim_{h \to 0}\left(\frac{2\tan(\frac{\pi}{3}+h)-2\tan(\frac{\pi}{3})}{h}\right).
  4. Simplify Expression: Simplify the expression inside the limit: 2tan(π3+h)2tan(π3)=2(tan(π3+h)tan(π3))2\tan(\frac{\pi}{3}+h)-2\tan(\frac{\pi}{3}) = 2(\tan(\frac{\pi}{3}+h)-\tan(\frac{\pi}{3})).
  5. Apply Tangent Formula: Apply the tangent addition formula: tan(a+b)=tan(a)+tan(b)1tan(a)tan(b)\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}, where a=π3a = \frac{\pi}{3} and b=hb = h.
  6. Substitute Values: Substitute tan(π3)=3\tan(\frac{\pi}{3}) = \sqrt{3} into the formula: tan(π3+h)=3+tan(h)13tan(h)\tan(\frac{\pi}{3}+h) = \frac{\sqrt{3}+\tan(h)}{1-\sqrt{3}\tan(h)}.
  7. Plug Expression Back: Plug the expression for tan(π3+h)\tan(\frac{\pi}{3}+h) back into the limit: limh0(2(3+tan(h))13tan(h)3)/h\lim_{h \to 0}\left(\frac{2\left(\sqrt{3}+\tan(h)\right)}{1-\sqrt{3}\tan(h)}-\sqrt{3}\right)/h.
  8. Simplify Inside Limit: Simplify the expression inside the limit: 2(3+tan(h))13tan(h)23\frac{2(\sqrt{3}+\tan(h))}{1-\sqrt{3}\tan(h)}-2\sqrt{3}/h = 2(tan(h)13tan(h))/h2\left(\frac{\tan(h)}{1-\sqrt{3}\tan(h)}\right)/h.
  9. Divide by h: Divide by h inside the limit: limh0(2tan(h)(13tan(h))h)\lim_{h \to 0}\left(\frac{2\tan(h)}{(1-\sqrt{3}\tan(h))h}\right).
  10. Recognize Approach: Recognize that as hh approaches 00, tan(h)h\frac{\tan(h)}{h} approaches 11.
  11. Substitute in Limit: Substitute tan(h)/h\tan(h)/h with 11 in the limit: limh0(213tan(h))\lim_{h \to 0}\left(\frac{2}{1-\sqrt{3}\tan(h)}\right).
  12. Evaluate Limit: Evaluate the limit as hh approaches 00: 213tan(0)=210=2\frac{2}{1-\sqrt{3}\tan(0)} = \frac{2}{1-0} = 2.
  13. Conclude Solution: Conclude that the value of the limit is 22, which corresponds to answer choice (B)(B).

More problems from Find derivatives of logarithmic functions