Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

F(x)=5^(x)

f(x)=F^(')(x)

int_(0)^(3)f(x)dx=

F(x)=5x F(x)=5^{x} \newlinef(x)=F(x) f(x)=F^{\prime}(x) \newline03f(x)dx= \int_{0}^{3} f(x) d x=

Full solution

Q. F(x)=5x F(x)=5^{x} \newlinef(x)=F(x) f(x)=F^{\prime}(x) \newline03f(x)dx= \int_{0}^{3} f(x) d x=
  1. Integrate from 00 to 33: Now, we integrate f(x)f(x) from 00 to 33.\newline03ln(5)5xdx\int_{0}^{3} \ln(5) \cdot 5^{x} \, dx\newlineLet's pull out the constant ln(5)\ln(5).\newlineln(5)035xdx\ln(5) \cdot \int_{0}^{3} 5^{x} \, dx
  2. Pull out constant ln(5)\ln(5): To integrate 5x5^x, we use the formula axdx=axln(a)+C\int a^x \, dx = \frac{a^x}{\ln(a)} + C.5xdx=5xln(5)+C\int 5^x \, dx = \frac{5^x}{\ln(5)} + C Now we apply the limits from 00 to 33.ln(5)×[53ln(5)50ln(5)]\ln(5) \times \left[\frac{5^3}{\ln(5)} - \frac{5^0}{\ln(5)}\right]
  3. Apply integration formula: Simplify the expression.\newlineln(5)×[125ln(5)1ln(5)]\ln(5) \times \left[\frac{125}{\ln(5)} - \frac{1}{\ln(5)}\right]\newlineThis simplifies to 1251=124125 - 1 = 124.

More problems from Evaluate definite integrals using the power rule