Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Exercise 1. Given a function 
f:R^(2)rarrR, the first-order partial derivatives are provided:

(del f)/(del x)(x,y)=6x-6y quad" and "quad(del f)/(del y)(x,y)=6y^(2)-6x.
(a) Determine all stationary points of 
f.
(b) Compute the second-order partial derivatives of 
f and find the Hessian matrix 
H_(f)(x,y) of 
f. Determine the points in the 
(x,y) plane where 
f has a local maximum, a local minimum or a saddle point.
(c) It is now stated that 
f(0,0)=1. Determine the second-degree Taylor polynomial 
P_(2)(x,y) for 
f with the expansion point 
(0,0).
Exercise 2. Define the function 
f:RrarrR by

f(x)={[(sin(x))/(x),x!=0","],[1,x=0.]:}
(a) Find the third-degree Taylor polynomial 
P_(3)(x) of 
sin(x) with expansion point 
x_(0)=0.
(b) Show that

lim_(x rarr0)(sin(x))/(x)=1.
Hint: Use (a) and Taylor's limit formula.
(c) Argue that 
f is continuous on 
R.
(d) Compute, e.g. using SymPy, a decimal approximation of 
int_(0)^(1)f(x)dx. You should include at least 5 decimals.
(e) Compute a Riemann sum 
S_(J)=sum_(j=1)^(J)f(xi_(j))Deltax_(j) approximating 
int_(0)^(1)f(x)dx, where we require that 
Deltax_(j) <= 1//30 for each 
j=1,dots,J.

Exercise 11. Given a function f:R2R f: \mathbb{R}^{2} \rightarrow \mathbb{R} , the first-order partial derivatives are provided:\newlinefx(x,y)=6x6y and fy(x,y)=6y26x. \frac{\partial f}{\partial x}(x, y)=6 x-6 y \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=6 y^{2}-6 x . \newline(a) Determine all stationary points of f f .\newline(b) Compute the second-order partial derivatives of f f and find the Hessian matrix Hf(x,y) \boldsymbol{H}_{f}(x, y) of f f . Determine the points in the (x,y) (x, y) plane where f f has a local maximum, a local minimum or a saddle point.\newline(c) It is now stated that f(0,0)=1 f(0,0)=1 . Determine the second-degree Taylor polynomial P2(x,y) P_{2}(x, y) for f f with the expansion point f f 00.\newlineExercise 22. Define the function f f 11 by\newlinef(x)={sin(x)xx0,1x=0. f(x)=\left\{\begin{array}{ll} \frac{\sin (x)}{x} & x \neq 0, \\ 1 & x=0 . \end{array}\right. \newline(a) Find the third-degree Taylor polynomial f f 22 of f f 33 with expansion point f f 44.\newline(b) Show that\newlinelimx0sin(x)x=1. \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 . \newlineHint: Use (a) and Taylor's limit formula.\newline(c) Argue that f f is continuous on f f 66.\newline(d) Compute, e.g. using SymPy, a decimal approximation of f f 77. You should include at least 55 decimals.\newline(e) Compute a Riemann sum f f 88 approximating f f 77, where we require that f f 00 for each f f 11.

Full solution

Q. Exercise 11. Given a function f:R2R f: \mathbb{R}^{2} \rightarrow \mathbb{R} , the first-order partial derivatives are provided:\newlinefx(x,y)=6x6y and fy(x,y)=6y26x. \frac{\partial f}{\partial x}(x, y)=6 x-6 y \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=6 y^{2}-6 x . \newline(a) Determine all stationary points of f f .\newline(b) Compute the second-order partial derivatives of f f and find the Hessian matrix Hf(x,y) \boldsymbol{H}_{f}(x, y) of f f . Determine the points in the (x,y) (x, y) plane where f f has a local maximum, a local minimum or a saddle point.\newline(c) It is now stated that f(0,0)=1 f(0,0)=1 . Determine the second-degree Taylor polynomial P2(x,y) P_{2}(x, y) for f f with the expansion point f f 00.\newlineExercise 22. Define the function f f 11 by\newlinef(x)={sin(x)xx0,1x=0. f(x)=\left\{\begin{array}{ll} \frac{\sin (x)}{x} & x \neq 0, \\ 1 & x=0 . \end{array}\right. \newline(a) Find the third-degree Taylor polynomial f f 22 of f f 33 with expansion point f f 44.\newline(b) Show that\newlinelimx0sin(x)x=1. \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 . \newlineHint: Use (a) and Taylor's limit formula.\newline(c) Argue that f f is continuous on f f 66.\newline(d) Compute, e.g. using SymPy, a decimal approximation of f f 77. You should include at least 55 decimals.\newline(e) Compute a Riemann sum f f 88 approximating f f 77, where we require that f f 00 for each f f 11.
  1. Identify Stationary Points: Identify the stationary points by setting the first-order partial derivatives to zero.\newlinefx(x,y)=6x6y=0 \frac{\partial f}{\partial x}(x,y) = 6x - 6y = 0 \newlinefy(x,y)=6y26x=0 \frac{\partial f}{\partial y}(x,y) = 6y^2 - 6x = 0 \newlineSolving these equations:\newlinex=y x = y \newline6y26y=0 6y^2 - 6y = 0 \newliney(y1)=0 y(y - 1) = 0 \newlineSo, y=0 y = 0 or y=1 y = 1 , hence x=0 x = 0 or x=1 x = 1 .\newlineStationary points are (00,00) and (11,11).
  2. Compute Partial Derivatives: Compute the second-order partial derivatives and the Hessian matrix.\newline2fx2=6,2fy2=12y,2fxy=6 \frac{\partial^2 f}{\partial x^2} = 6, \quad \frac{\partial^2 f}{\partial y^2} = 12y, \quad \frac{\partial^2 f}{\partial x \partial y} = -6 \newlineHessian matrix Hf(x,y) H_f(x,y) is:\newline[66612y] \begin{bmatrix} 6 & -6 \\ -6 & 12y \end{bmatrix}
  3. Determine Critical Points: Determine the nature of the critical points using the Hessian matrix.\newlineFor (00,00):\newlineHf(0,0)=[6660] H_f(0,0) = \begin{bmatrix} 6 & -6 \\ -6 & 0 \end{bmatrix} \newlineDeterminant = 6×0(6)×(6)=366 \times 0 - (-6) \times (-6) = -36, which is negative, indicating a saddle point.\newlineFor (11,11):\newlineHf(1,1)=[66612] H_f(1,1) = \begin{bmatrix} 6 & -6 \\ -6 & 12 \end{bmatrix} \newlineDeterminant = 6×12(6)×(6)=366 \times 12 - (-6) \times (-6) = 36, which is positive. Since 2fx2>0 \frac{\partial^2 f}{\partial x^2} > 0 , it's a local minimum.
  4. Compute Taylor Polynomial: Compute the second-degree Taylor polynomial for f f at (00,00).\newlineGiven f(0,0)=1 f(0,0) = 1 ,\newlineP2(x,y)=1+fx(0,0)x+fy(0,0)y+12(2fx2(0,0)x2+22fxy(0,0)xy+2fy2(0,0)y2) P_2(x,y) = 1 + \frac{\partial f}{\partial x}(0,0) x + \frac{\partial f}{\partial y}(0,0) y + \frac{1}{2} \left( \frac{\partial^2 f}{\partial x^2}(0,0) x^2 + 2 \frac{\partial^2 f}{\partial x \partial y}(0,0) xy + \frac{\partial^2 f}{\partial y^2}(0,0) y^2 \right) \newlineP2(x,y)=1+0x+0y+12(6x212xy+0y2) P_2(x,y) = 1 + 0 \cdot x + 0 \cdot y + \frac{1}{2} (6x^2 - 12xy + 0y^2) \newlineP2(x,y)=1+3x26xy P_2(x,y) = 1 + 3x^2 - 6xy

More problems from Find derivatives of sine and cosine functions