Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

et 
x(t) be the solution of the initial value problem:

=-x-x^(3),x(0)=0,x^(')(0)=2". "
Vhen 
x=1, the value of 
4(x^(˙))^(2) is 
qquad
ormula: 
x^(¨)=(d)/(dx)((((x^(˙)))^(2))/(2))

et x(t) x(t) be the solution of the initial value problem:\newline=xx3,x(0)=0,x(0)=2 =-x-x^{3}, x(0)=0, x^{\prime}(0)=2 \text {. } \newlineVhen x=1 x=1 , the value of 4(x˙)2 4(\dot{x})^{2} is \qquad \newlineormula: x¨=ddx((x˙)22) \ddot{x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{(\dot{x})^{2}}{2}\right)

Full solution

Q. et x(t) x(t) be the solution of the initial value problem:\newline=xx3,x(0)=0,x(0)=2 =-x-x^{3}, x(0)=0, x^{\prime}(0)=2 \text {. } \newlineVhen x=1 x=1 , the value of 4(x˙)2 4(\dot{x})^{2} is \qquad \newlineormula: x¨=ddx((x˙)22) \ddot{x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{(\dot{x})^{2}}{2}\right)
  1. Given Differential Equation: Given the differential equation: x^{\¨} = -x - x^{3} and initial conditions x(0)=0x(0) = 0, x(0)=2x^{\prime}(0) = 2.
  2. Differentiate Velocity: To find x^{\¨}, we differentiate the velocity x^{\˙} with respect to xx using the chain rule: x^{\¨} = \frac{d}{dx}\left(\frac{(x^{\˙})^2}{2}\right).
  3. Set Equation Equal: We know that x^{\¨} = -x - x^{3}. So, we set (d)/(dx)((x^{\˙})^2/2) = -x - x^{3}.
  4. Integrate Both Sides: Multiply both sides by 22 to get rid of the fraction: ddx(x˙)2\frac{d}{dx}(x^{\dot{}})^2 = 2x2x3-2x - 2x^{3}.
  5. Find Integration Constant: We need to find (x˙)2(x^{\dot{}})^2 when x=1x=1. Integrate both sides with respect to xx to find (x˙)2(x^{\dot{}})^2 as a function of xx.
  6. Use Initial Condition: The integral of the right side with respect to xx is x212x4+C-x^2 - \frac{1}{2}x^4 + C, where CC is the integration constant.
  7. Calculate Integration Constant: To find CC, use the initial condition x(0)=2x'(0) = 2, which means (x˙)2=4(x^{\dot{}})^2 = 4 when x=0x = 0.
  8. Find Velocity Squared: Plug x=0x = 0 into x212x4+C-x^2 - \frac{1}{2}x^4 + C to get CC: 4=021204+C4 = -0^2 - \frac{1}{2}0^4 + C, so C=4C = 4.
  9. Calculate Velocity Squared: Now we have (x˙)2=x212x4+4(\dot{x})^2 = -x^2 - \frac{1}{2}x^4 + 4. Plug in x=1x = 1 to find (x˙)2(\dot{x})^2: (x˙)2=121214+4(\dot{x})^2 = -1^2 - \frac{1}{2}1^4 + 4.
  10. Multiply Velocity Squared: Calculate (x(˙))2(x^{(\dot{})})^2 when x=1x = 1: (x(˙))2=1(12)(1)+4(x^{(\dot{})})^2 = -1 - \left(\frac{1}{2}\right)(1) + 4.
  11. Multiply Velocity Squared: Calculate (x(˙))2(x^{(\dot{})})^2 when x=1x = 1: (x(˙))2=1(12)(1)+4(x^{(\dot{})})^2 = -1 - (\frac{1}{2})(1) + 4. Simplify the expression: (x(˙))2=112+4=2.5(x^{(\dot{})})^2 = -1 - \frac{1}{2} + 4 = 2.5.
  12. Multiply Velocity Squared: Calculate (x(˙))2(x^{(\dot{})})^2 when x=1x = 1: (x(˙))2=1(12)(1)+4(x^{(\dot{})})^2 = -1 - (\frac{1}{2})(1) + 4. Simplify the expression: (x(˙))2=112+4=2.5(x^{(\dot{})})^2 = -1 - \frac{1}{2} + 4 = 2.5. Finally, multiply (x(˙))2(x^{(\dot{})})^2 by 44 to find 4(x(˙))24(x^{(\dot{})})^2: 4(x(˙))2=4×2.5=104(x^{(\dot{})})^2 = 4 \times 2.5 = 10.

More problems from Write equations of cosine functions using properties