Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether the tests for symmetry detect symmetry with respect to
a. The polar axis. Replace 
(r,theta) by 
(r,-theta).
b. The line 
theta=(pi)/(2). Replace 
(r,theta) by 
(r,pi-theta).
c. The pole. Replace 
(r,theta) by 
(-r,theta).

r^(2)=9sin 2theta

Determine whether the tests for symmetry detect symmetry with respect to\newlinea. The polar axis. Replace (r,θ) (r, \theta) by (r,θ) (r,-\theta) .\newlineb. The line θ=π2 \theta=\frac{\pi}{2} . Replace (r,θ) (r, \theta) by (r,πθ) (r, \pi-\theta) .\newlinec. The pole. Replace (r,θ) (r, \theta) by (r,θ) (-r, \theta) .\newliner2=9sin2θ r^{2}=9 \sin 2 \theta

Full solution

Q. Determine whether the tests for symmetry detect symmetry with respect to\newlinea. The polar axis. Replace (r,θ) (r, \theta) by (r,θ) (r,-\theta) .\newlineb. The line θ=π2 \theta=\frac{\pi}{2} . Replace (r,θ) (r, \theta) by (r,πθ) (r, \pi-\theta) .\newlinec. The pole. Replace (r,θ) (r, \theta) by (r,θ) (-r, \theta) .\newliner2=9sin2θ r^{2}=9 \sin 2 \theta
  1. Test Symmetry Polar Axis: a. Test for symmetry with respect to the polar axis by replacing (r,θ)(r, \theta) with (r,θ)(r, -\theta).\newlineOriginal equation: r2=9sin(2θ)r^2 = 9\sin(2\theta)\newlineReplace θ\theta with θ-\theta: r2=9sin(2(θ))=9sin(2θ)r^2 = 9\sin(2(-\theta)) = 9\sin(-2\theta)\newlineSince sin(x)=sin(x)\sin(-x) = -\sin(x), we have: r2=9(sin(2θ))=9sin(2θ)r^2 = 9(-\sin(2\theta)) = -9\sin(2\theta)\newlineThis does not match the original equation, so there is no symmetry with respect to the polar axis.
  2. Test Symmetry Line: b. Test for symmetry with respect to the line θ=π2\theta = \frac{\pi}{2} by replacing (r,θ)(r, \theta) with (r,πθ)(r, \pi - \theta).\newlineOriginal equation: r2=9sin(2θ)r^2 = 9\sin(2\theta)\newlineReplace θ\theta with πθ\pi - \theta: r2=9sin(2(πθ))=9sin(2π2θ)r^2 = 9\sin(2(\pi - \theta)) = 9\sin(2\pi - 2\theta)\newlineSince sin(2πx)=sin(x)\sin(2\pi - x) = \sin(x), we have: r2=9sin(2θ)r^2 = 9\sin(2\theta)\newlineThis matches the original equation, so there is symmetry with respect to the line θ=π2\theta = \frac{\pi}{2}.
  3. Test Symmetry Pole: c. Test for symmetry with respect to the pole by replacing (r,θ)(r, \theta) with (r,θ)(-r, \theta).\newlineOriginal equation: r2=9sin(2θ)r^2 = 9\sin(2\theta)\newlineReplace rr with r-r: (r)2=9sin(2θ)(-r)^2 = 9\sin(2\theta)\newlineSince (r)2=r2(-r)^2 = r^2, we have: r2=9sin(2θ)r^2 = 9\sin(2\theta)\newlineThis matches the original equation, so there is symmetry with respect to the pole.

More problems from Reflections of functions