Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider these matrix transformations:

{:[A=[[-4,-1],[-4,2]]],[B=[[1,4],[,],[4,1]]]:}
This is the result of composing 
A@B, with the first column missing.

[[x,-17],[y,-14]]
Find the missing values.

{:[x=],[y=]:}

Consider these matrix transformations:\newlineA=[4amp;14amp;2]B=[1amp;44amp;1] \begin{array}{l} \mathbf{A}=\left[\begin{array}{cc} -4 & -1 \\ -4 & 2 \end{array}\right] \\ \mathbf{B}=\left[\begin{array}{ll} 1 & 4 \\ 4 & 1 \end{array}\right] \end{array} \newlineThis is the result of composing AB \mathbf{A} \circ \mathbf{B} , with the first column missing.\newline[xamp;17yamp;14] \left[\begin{array}{ll} x & -17 \\ y & -14 \end{array}\right] \newlineFind the missing values.\newlinex=y= \begin{array}{l} x= \\ y= \end{array}

Full solution

Q. Consider these matrix transformations:\newlineA=[4142]B=[1441] \begin{array}{l} \mathbf{A}=\left[\begin{array}{cc} -4 & -1 \\ -4 & 2 \end{array}\right] \\ \mathbf{B}=\left[\begin{array}{ll} 1 & 4 \\ 4 & 1 \end{array}\right] \end{array} \newlineThis is the result of composing AB \mathbf{A} \circ \mathbf{B} , with the first column missing.\newline[x17y14] \left[\begin{array}{ll} x & -17 \\ y & -14 \end{array}\right] \newlineFind the missing values.\newlinex=y= \begin{array}{l} x= \\ y= \end{array}
  1. Given Matrices A and B: We are given two matrices AA and BB, and the result of their multiplication A@BA@B with the first column missing. We need to find the missing values xx and yy in the first column of the resulting matrix.\newlineA=[[4,1],[4,2]]A = [[-4, -1], [-4, 2]]\newlineB=[[1,4],[4,1]]B = [[1, 4], [4, 1]]\newlineThe resulting matrix after A@BA@B is given as:\newline[[x,17],[y,14]][[x, -17], [y, -14]]\newlineTo find xx and yy, we need to perform the matrix multiplication A@BA@B and look at the first column of the result.
  2. Calculating x: First, let's calculate the element in the first row and first column of the resulting matrix A@BA@B. This is done by taking the dot product of the first row of AA with the first column of BB: (4)1+(1)4=44=8(-4)\cdot 1 + (-1)\cdot 4 = -4 - 4 = -8 So, x=8x = -8.
  3. Calculating y: Now, let's calculate the element in the second row and first column of the resulting matrix A@BA@B. This is done by taking the dot product of the second row of AA with the first column of BB: (4)1+24=4+8=4(-4)\cdot 1 + 2\cdot 4 = -4 + 8 = 4 So, y=4y = 4.

More problems from Domain and range