Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the complex number 
z=2sqrt2-2sqrt2i.
What is 
z^(4) ?
Hint: 
z has a modulus of 4 and an argument of 
315^(@).
Choose 1 answer:
(A) 
-11.3-11.3 i
(B) 
-181+181 i
(c) -256
(D) 
-11.3+11.3 i

Consider the complex number z=2222i z=2 \sqrt{2}-2 \sqrt{2} i .\newlineWhat is z4 z^{4} ?\newlineHint: z z has a modulus of 44 and an argument of 315 315^{\circ} .\newlineChoose 11 answer:\newline(A) 11.311.3i -11.3-11.3 i \newline(B) 181+181i -181+181 i \newline(C) 256-256\newline(D) 11.3+11.3i -11.3+11.3 i

Full solution

Q. Consider the complex number z=2222i z=2 \sqrt{2}-2 \sqrt{2} i .\newlineWhat is z4 z^{4} ?\newlineHint: z z has a modulus of 44 and an argument of 315 315^{\circ} .\newlineChoose 11 answer:\newline(A) 11.311.3i -11.3-11.3 i \newline(B) 181+181i -181+181 i \newline(C) 256-256\newline(D) 11.3+11.3i -11.3+11.3 i
  1. Given complex number: We are given the complex number z=2222iz = 2\sqrt{2} - 2\sqrt{2}i. We need to find z4z^{4}.\newlineFirst, let's confirm the modulus and argument of zz.\newlineThe modulus of zz is z=(22)2+(22)2=8+8=16=4|z| = \sqrt{(2\sqrt{2})^{2} + (-2\sqrt{2})^{2}} = \sqrt{8 + 8} = \sqrt{16} = 4.\newlineThe argument of zz is the angle in the standard position whose terminal side contains the point (22,22)(2\sqrt{2}, -2\sqrt{2}). This is a 4545-degree angle in the fourth quadrant, which corresponds to 315315 degrees or 7π4\frac{7\pi}{4} radians.
  2. Confirming modulus and argument: Now, we can use De Moivre's Theorem to find z4z^{4}. De Moivre's Theorem states that for a complex number in polar form (r(cos(θ)+isin(θ)))(r(\cos(\theta) + i\sin(\theta))), (r(cos(θ)+isin(θ)))n=rn(cos(nθ)+isin(nθ))(r(\cos(\theta) + i\sin(\theta)))^n = r^n(\cos(n\theta) + i\sin(n\theta)). Since we have the modulus r=4r = 4 and the argument θ=315\theta = 315 degrees, we can apply the theorem to find z4z^{4}.
  3. Using De Moivre's Theorem: Applying De Moivre's Theorem, we get:\newlinez4=(4(cos(315)+isin(315)))4z^{4} = (4(\cos(315) + i\sin(315)))^{4}\newline = 44(cos(4×315)+isin(4×315))4^{4}(\cos(4\times315) + i\sin(4\times315))\newline = 256(cos(1260)+isin(1260))256(\cos(1260) + i\sin(1260))\newlineSince 12601260 degrees is equivalent to 360360 degrees (full circle) times 33 plus an additional 180180 degrees, we can simplify cos(1260)\cos(1260) and sin(1260)\sin(1260) to cos(180)\cos(180) and 44(cos(4×315)+isin(4×315))4^{4}(\cos(4\times315) + i\sin(4\times315))00.
  4. Applying De Moivre's Theorem: We know that cos(180 degrees)=1\cos(180 \text{ degrees}) = -1 and sin(180 degrees)=0\sin(180 \text{ degrees}) = 0. Therefore, z4=256(cos(180)+isin(180))=256(1+i0)=2561=256z^{4} = 256(\cos(180) + i\sin(180)) = 256(-1 + i\cdot 0) = 256 \cdot -1 = -256

More problems from Domain and range