Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Condense 5ln2+7lnx+4lny5\ln 2+7\ln x+4\ln y.

Full solution

Q. Condense 5ln2+7lnx+4lny5\ln 2+7\ln x+4\ln y.
  1. Apply Power Rule: We can use the power rule of logarithms, which states that aln(b)=ln(ba)a \cdot \ln(b) = \ln(b^a), to rewrite each term.\newline5ln25\ln 2 becomes ln(25)\ln(2^5), 7lnx7\ln x becomes ln(x7)\ln(x^7), and 4lny4\ln y becomes ln(y4)\ln(y^4).
  2. Apply Power Rule: Now we apply the power rule to each term:\newline5ln2=ln(25)5\ln 2 = \ln(2^5)\newline7lnx=ln(x7)7\ln x = \ln(x^7)\newline4lny=ln(y4)4\ln y = \ln(y^4)
  3. Combine Logs: Next, we use the property of logarithms that allows us to combine logs with the same base that are being added: ln(a)+ln(b)=ln(ab)\ln(a) + \ln(b) = \ln(a \cdot b). So, ln(25)+ln(x7)+ln(y4)\ln(2^5) + \ln(x^7) + \ln(y^4) becomes ln(25x7y4)\ln(2^5 \cdot x^7 \cdot y^4).
  4. Perform Multiplication: We perform the multiplication inside the logarithm: ln(25×x7×y4)=ln(32×x7×y4)\ln(2^5 \times x^7 \times y^4) = \ln(32 \times x^7 \times y^4).

More problems from Simplify expressions by combining like terms