Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Triangle b b is isosceles. Two triangles are cut on so that the remaining pentagon has five equal sides of length x x . The value of x x can be found using this equation.\newline(2ba)x2+(4a2b2)(2xa)=0(2b-a)x^{2}+(4a^{2}-b^{2})(2x-a)=0\newlinea. Find x x when a=10 a=10 and b=12 b=12 .\newlineb. Can a a be equal to 2b 2b ?

Full solution

Q. Triangle b b is isosceles. Two triangles are cut on so that the remaining pentagon has five equal sides of length x x . The value of x x can be found using this equation.\newline(2ba)x2+(4a2b2)(2xa)=0(2b-a)x^{2}+(4a^{2}-b^{2})(2x-a)=0\newlinea. Find x x when a=10 a=10 and b=12 b=12 .\newlineb. Can a a be equal to 2b 2b ?
  1. Given Equation and Values: We are given the equation (2ba)x2+(4a2b2)(2xa)=0(2b-a)x^{2}+(4a^{2}-b^{2})(2x-a)=0 and the values a=10a=10 and b=12b=12. We need to find the value of xx.
  2. Substitute and Simplify: Substitute a=10a=10 and b=12b=12 into the equation.(2(12)10)x2+(4(10)2(12)2)(2x10)=0(2(12)-10)x^{2}+(4(10)^{2}-(12)^{2})(2x-10)=0
  3. Quadratic Equation: Simplify the equation.\newline(2410)x2+(400144)(2x10)=0(24-10)x^{2}+(400-144)(2x-10)=0
  4. Calculate Discriminant: Continue simplifying. 14x2+256(2x10)=014x^2+256(2x-10)=0
  5. Use Quadratic Formula: Distribute the 256256.\newline14x2+512x2560=014x^{2}+512x-2560=0
  6. Calculate Solutions: This is a quadratic equation in the form of ax2+bx+c=0ax^2 + bx + c = 0. We can solve for xx using the quadratic formula, x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, but first, let's check if the equation can be factored.
  7. Solution for xx: The equation 14x2+512x2560=014x^{2}+512x-2560=0 does not factor easily, so we will use the quadratic formula.\newlinea=14a = 14, b=512b = 512, and c=2560c = -2560.
  8. Check a=2ba=2b: Calculate the discriminant (b24ac)(b^2 - 4ac).\newlineDiscriminant = 51224(14)(2560)512^2 - 4(14)(-2560)
  9. Simplify and Solve: Calculate the discriminant.\newlineDiscriminant = 262144+143360262144 + 143360
  10. Conclusion: Add the values to find the discriminant. Discriminant = 405504405504
  11. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}
  12. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}Calculate the square root of the discriminant.\newline405504=636.8\sqrt{405504} = 636.8 (approximately)
  13. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}Calculate the square root of the discriminant.\newline405504=636.8\sqrt{405504} = 636.8 (approximately)Substitute the square root back into the quadratic formula.\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28}
  14. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}Calculate the square root of the discriminant.\newline405504=636.8\sqrt{405504} = 636.8 (approximately)Substitute the square root back into the quadratic formula.\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28}Calculate the two possible values for x.\newlinex1=512+636.828x_1 = \frac{-512 + 636.8}{28}\newlinex2=512636.828x_2 = \frac{-512 - 636.8}{28}
  15. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504 Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14} Calculate the square root of the discriminant.\newline405504=636.8\sqrt{405504} = 636.8 (approximately) Substitute the square root back into the quadratic formula.\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28} Calculate the two possible values for xx.\newlinex1=512+636.828x_1 = \frac{-512 + 636.8}{28}\newlinex2=512636.828x_2 = \frac{-512 - 636.8}{28} Solve for x1x_1.\newlinex1=124.828x_1 = \frac{124.8}{28}\newlinex_1 \approx \(4\).\(457\)
  16. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for \(x\).\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\)Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\)
  17. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for \(x\).\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\)Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\)Since we are looking for a length, we cannot have a negative value for \(x\). Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) is the solution.
  18. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for x.\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\)Solve for \(x_2\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)Since we are looking for a length, we cannot have a negative value for x. Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(3\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\)?\(\newline\)If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(3\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) in the original equation.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(8\)
  19. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\) Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\) Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately) Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\) Calculate the two possible values for \(x\).\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\) Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\) Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\) Since we are looking for a length, we cannot have a negative value for \(x\). Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\)?\(\newline\)If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(7\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\) in the original equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(0\) Simplify the equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(1\)
  20. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for \(x\).\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\)Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\)Since we are looking for a length, we cannot have a negative value for \(x\). Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\)?\(\newline\)If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(7\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\) in the original equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(0\)Simplify the equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(1\)Further simplification gives us:\(\newline\)\(\sqrt{405504} = 636.8\)\(2\)
  21. Conclusion: Add the values to find the discriminant.\(\text{Discriminant} = 405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for x.\(x_1 = \frac{-512 + 636.8}{28}\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(x_1 = \frac{124.8}{28}\)\(x_1 \approx 4.457\)Solve for \(x_2\).\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)Since we are looking for a length, we cannot have a negative value for x. Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(3\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\)?If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(3\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) in the original equation.\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(8\)Simplify the equation.\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(9\)Further simplification gives us:\(\sqrt{405504} = 636.8\)\(0\)Since the first term is \(0\), the equation simplifies to:\(\sqrt{405504} = 636.8\)\(1\)
  22. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\) Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\) Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately) Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\) Calculate the two possible values for \(x\).\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\) Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\) Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\) Since we are looking for a length, we cannot have a negative value for \(x\). Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\)?\(\newline\)If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(7\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\) in the original equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(0\) Simplify the equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(1\) Further simplification gives us:\(\newline\)\(\sqrt{405504} = 636.8\)\(2\) Since the first term is \(\sqrt{405504} = 636.8\)\(3\), the equation simplifies to:\(\newline\)\(\sqrt{405504} = 636.8\)\(4\) For the equation to hold true, either \(\sqrt{405504} = 636.8\)\(5\) or \(\sqrt{405504} = 636.8\)\(6\). Since \(\sqrt{405504} = 636.8\)\(7\) cannot be \(\sqrt{405504} = 636.8\)\(3\) (as it is a given length), the only possibility is that \(\sqrt{405504} = 636.8\)\(6\).
  23. Conclusion: Add the values to find the discriminant.\(\newline\)Discriminant = \(405504\)Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)Calculate the square root of the discriminant.\(\newline\)\(\sqrt{405504} = 636.8\) (approximately)Substitute the square root back into the quadratic formula.\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)Calculate the two possible values for x.\(\newline\)\(x_1 = \frac{-512 + 636.8}{28}\)\(\newline\)\(x_2 = \frac{-512 - 636.8}{28}\)Solve for \(x_1\).\(\newline\)\(x_1 = \frac{124.8}{28}\)\(\newline\)\(x_1 \approx 4.457\)Solve for \(x_2\).\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(0\)\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(1\)Since we are looking for a length, we cannot have a negative value for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\). Therefore, \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(3\) is the solution.Now, let's address part b of the problem: Can \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) be equal to \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\)?\(\newline\)If \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(6\), then we substitute \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(4\) with \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(5\) in the original equation.\(\newline\)\(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(9\)Simplify the equation.\(\newline\)\(\sqrt{405504} = 636.8\)\(0\)Further simplification gives us:\(\newline\)\(\sqrt{405504} = 636.8\)\(1\)Since the first term is \(\sqrt{405504} = 636.8\)\(2\), the equation simplifies to:\(\newline\)\(\sqrt{405504} = 636.8\)\(3\)For the equation to hold true, either \(\sqrt{405504} = 636.8\)\(4\) or \(\sqrt{405504} = 636.8\)\(5\). Since \(\sqrt{405504} = 636.8\)\(6\) cannot be \(\sqrt{405504} = 636.8\)\(2\) (as it is a given length), the only possibility is that \(\sqrt{405504} = 636.8\)\(5\).Solve for \(x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}\)\(2\) when \(\sqrt{405504} = 636.8\)\(5\).\(\newline\)\(x = \frac{-512 \pm 636.8}{28}\)\(1\)\(\newline\)x = b
  24. Conclusion: Add the values to find the discriminant.\newlineDiscriminant = 405504405504 Since the discriminant is positive, there are two real solutions. Now, calculate the solutions using the quadratic formula.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14} Calculate the square root of the discriminant.\newline405504=636.8\sqrt{405504} = 636.8 (approximately) Substitute the square root back into the quadratic formula.\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28} Calculate the two possible values for xx.\newlinex1=512+636.828x_1 = \frac{-512 + 636.8}{28}\newlinex2=512636.828x_2 = \frac{-512 - 636.8}{28} Solve for x1x_1.\newlinex1=124.828x_1 = \frac{124.8}{28}\newlinex14.457x_1 \approx 4.457 Solve for x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}00.\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}11\newlinex=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}22 Since we are looking for a length, we cannot have a negative value for xx. Therefore, x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}44 is the solution.Now, let's address part b of the problem: Can x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}55 be equal to x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}66?\newlineIf x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}77, then we substitute x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}55 with x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}66 in the original equation.\newline405504=636.8\sqrt{405504} = 636.800 Simplify the equation.\newline405504=636.8\sqrt{405504} = 636.811 Further simplification gives us:\newline405504=636.8\sqrt{405504} = 636.822 Since the first term is 405504=636.8\sqrt{405504} = 636.833, the equation simplifies to:\newline405504=636.8\sqrt{405504} = 636.844 For the equation to hold true, either 405504=636.8\sqrt{405504} = 636.855 or 405504=636.8\sqrt{405504} = 636.866. Since 405504=636.8\sqrt{405504} = 636.877 cannot be 405504=636.8\sqrt{405504} = 636.833 (as it is a given length), the only possibility is that 405504=636.8\sqrt{405504} = 636.866.Solve for xx when 405504=636.8\sqrt{405504} = 636.866.\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28}22\newlinex=512±636.828x = \frac{-512 \pm 636.8}{28}33 This means that if x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}55 is equal to x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}66, then xx must be equal to 405504=636.8\sqrt{405504} = 636.877. There is no contradiction here, so x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}55 can be equal to x=512±4055042×14x = \frac{-512 \pm \sqrt{405504}}{2 \times 14}66.

More problems from Write and solve direct variation equations