Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Answer:
\newline
(b)
(
h
−
1
)
2
+
(
h
−
2
)
3
=
3
\frac{(h-1)}{2}+\frac{(h-2)}{3}=3
2
(
h
−
1
)
+
3
(
h
−
2
)
=
3
View step-by-step help
Home
Math Problems
Algebra 2
Solve quadratic inequalities
Full solution
Q.
Answer:
\newline
(b)
(
h
−
1
)
2
+
(
h
−
2
)
3
=
3
\frac{(h-1)}{2}+\frac{(h-2)}{3}=3
2
(
h
−
1
)
+
3
(
h
−
2
)
=
3
Find Common Denominator:
Find a common denominator for the
fractions
on the left side of the equation.
\newline
The common denominator for
2
2
2
and
3
3
3
is
6
6
6
.
Rewrite Fractions:
Rewrite each
fraction
with the common denominator.
\newline
h
−
1
2
×
3
3
+
h
−
2
3
×
2
2
=
3
\frac{h-1}{2} \times \frac{3}{3} + \frac{h-2}{3} \times \frac{2}{2} = 3
2
h
−
1
×
3
3
+
3
h
−
2
×
2
2
=
3
\newline
This becomes
3
(
h
−
1
)
6
+
2
(
h
−
2
)
6
=
3
\frac{3(h-1)}{6} + \frac{2(h-2)}{6} = 3
6
3
(
h
−
1
)
+
6
2
(
h
−
2
)
=
3
Combine Fractions:
Combine the fractions on the left side since they have the same denominator.
3
(
h
−
1
)
+
2
(
h
−
2
)
6
=
3
\frac{3(h-1) + 2(h-2)}{6} = 3
6
3
(
h
−
1
)
+
2
(
h
−
2
)
=
3
Distribute and Combine:
Distribute the numerators and combine like terms.
\newline
(
3
h
−
3
+
2
h
−
4
)
/
6
=
3
(3h - 3 + 2h - 4)/6 = 3
(
3
h
−
3
+
2
h
−
4
)
/6
=
3
\newline
This simplifies to
(
5
h
−
7
)
/
6
=
3
(5h - 7)/6 = 3
(
5
h
−
7
)
/6
=
3
Eliminate Denominator:
Multiply both sides of the equation by
6
6
6
to eliminate the denominator.
\newline
(
5
h
−
7
)
/
6
×
6
=
3
×
6
(5h - 7)/6 \times 6 = 3 \times 6
(
5
h
−
7
)
/6
×
6
=
3
×
6
\newline
This simplifies to
5
h
−
7
=
18
5h - 7 = 18
5
h
−
7
=
18
Isolate h Term:
Add
7
7
7
to both sides of the equation to isolate the term with
h
h
h
.
\newline
5
h
−
7
+
7
=
18
+
7
5h - 7 + 7 = 18 + 7
5
h
−
7
+
7
=
18
+
7
\newline
This simplifies to
5
h
=
25
5h = 25
5
h
=
25
Solve for
h
h
h
:
Divide both sides by
5
5
5
to solve for
h
h
h
.
5
h
5
=
25
5
\frac{5h}{5} = \frac{25}{5}
5
5
h
=
5
25
This simplifies to
h
=
5
h = 5
h
=
5
More problems from Solve quadratic inequalities
Question
Solve for
s
s
s
.
\newline
∣
s
∣
+
3
≥
8
|s| + 3 \geq 8
∣
s
∣
+
3
≥
8
Get tutor help
Posted 10 months ago
Question
Which compound inequality represents the value of
x
?
x ?
x
?
\newline
(
x
−
1
)
(
x
+
1
)
>
0
(x - 1)(x + 1) > 0
(
x
−
1
)
(
x
+
1
)
>
0
\newline
Get tutor help
Posted 10 months ago
Question
A particular company charges advertisers a one time cost of
$
500
\$500
$500
, in addition to
$
4.50
\$4.50
$4.50
for every one thousand times an advertisement is shown on the company's webpage. An advertiser wants its ad to appear
M
M
M
thousand times on the webpage, but does not want to spend more than
$
5
,
000
\$5,000
$5
,
000
. Which of the following inequalities best describes the situation?
\newline
Choices:
\newline
(A)
500
+
4.50
M
≥
5
,
000
500+4.50M\geq5,000
500
+
4.50
M
≥
5
,
000
\newline
(B)
4.50
+
500
M
>
5
,
000
4.50+500M>5,000
4.50
+
500
M
>
5
,
000
\newline
(C)
500
+
4.50
M
≤
5
,
000
500+4.50M\leq5,000
500
+
4.50
M
≤
5
,
000
\newline
(D)
500
+
4.50
M
<
5
,
000
500+4.50M<5,000
500
+
4.50
M
<
5
,
000
Get tutor help
Posted 1 year ago
Question
7
x
+
1
<
x
+
9
7x+1 < x+9
7
x
+
1
<
x
+
9
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
4
3
x > \frac{4}{3}
x
>
3
4
\newline
(B)
x
<
4
3
x < \frac{4}{3}
x
<
3
4
\newline
(C)
x
<
1
x < 1
x
<
1
\newline
(D)
x
<
5
3
x < \frac{5}{3}
x
<
3
5
Get tutor help
Posted 10 months ago
Question
52
−
3
x
<
−
14
52-3x < -14
52
−
3
x
<
−
14
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
−
38
3
x > -\frac{38}{3}
x
>
−
3
38
\newline
(B)
x
>
38
3
x > \frac{38}{3}
x
>
3
38
\newline
(C)
x
<
22
x < 22
x
<
22
\newline
(D)
x
>
22
x > 22
x
>
22
Get tutor help
Posted 1 year ago
Question
5
−
3
x
>
2
x
+
2
5-3x > 2x+2
5
−
3
x
>
2
x
+
2
\newline
Which of the following best describes the solutions to the inequality shown?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
7
5
x < \frac{7}{5}
x
<
5
7
\newline
(B)
x
<
3
x < 3
x
<
3
\newline
(C)
x
<
3
5
x < \frac{3}{5}
x
<
5
3
\newline
(D)
x
>
3
5
x > \frac{3}{5}
x
>
5
3
Get tutor help
Posted 1 year ago
Question
Rani is a real estate agent. For each house she sells, she pays
$
100
\$ 100
$100
in fees, but earns a commission of
1.8
%
1.8 \%
1.8%
of the selling price of the house. Rani's total profit from a particular house is
$
4
,
580
\$ 4,580
$4
,
580
. If
p
p
p
represents the selling price of the house, which equation best models the situation?
\newline
Choose
1
1
1
answer:
\newline
(A)
0.018
p
−
100
=
4580
0.018 p-100=4580
0.018
p
−
100
=
4580
\newline
(B)
0.018
p
+
100
=
4580
0.018 p+100=4580
0.018
p
+
100
=
4580
\newline
(C)
(
100
−
0.018
)
p
=
4580
(100-0.018) p=4580
(
100
−
0.018
)
p
=
4580
\newline
(D)
(
100
+
0.018
)
p
=
4580
(100+0.018) p=4580
(
100
+
0.018
)
p
=
4580
Get tutor help
Posted 1 year ago
Question
A commercial airplane that is
1
1
1
,
500
500
500
miles into a
2
2
2
,
500
500
500
-mile journey is traveling at
450
450
450
knots in still air when it picks up a tailwind of
150
150
150
knots (in the same direction). If
h
h
h
is the number of hours remaining in the airplane's flight, which of the following equations best describes the situation?
\newline
1
1
1
k
n
o
t
=
1.15
\mathrm{knot}=1.15
knot
=
1.15
miles per hour (mph)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
,
500
+
690
h
=
2
,
500
1,500+690 h=2,500
1
,
500
+
690
h
=
2
,
500
\newline
(B)
1
,
500
+
600
h
=
2
,
500
1,500+600 h=2,500
1
,
500
+
600
h
=
2
,
500
\newline
(C)
1
,
500
−
600
h
=
2
,
500
1,500-600 h=2,500
1
,
500
−
600
h
=
2
,
500
\newline
(D)
1
,
500
−
690
h
=
2
,
500
1,500-690 h=2,500
1
,
500
−
690
h
=
2
,
500
Get tutor help
Posted 1 year ago
Question
A weeping willow that is
15
15
15
feet in height grows to a maximum height of
35
35
35
feet in
y
y
y
years at a constant rate of
24
24
24
inches per year. Which of the following equations best describes this situation?
\newline
1
1
1
foot
=
12
=12
=
12
inches
\newline
Choose
1
1
1
answer:
\newline
(A)
35
=
15
+
2
y
35=15+2 y
35
=
15
+
2
y
\newline
(B)
35
=
15
+
24
y
35=15+24 y
35
=
15
+
24
y
\newline
(C)
35
=
15
−
2
y
35=15-2 y
35
=
15
−
2
y
\newline
(D)
35
=
15
−
24
y
35=15-24 y
35
=
15
−
24
y
Get tutor help
Posted 1 year ago
Question
The gas mileage for a car is
23
23
23
miles per gallon when the car travels at
60
60
60
miles per hour. The car begins a trip with
13
13
13
gallons in its tank, travels at an average speed of
60
60
60
miles per hour for
h
h
h
hours, and ends the trip with
10
10
10
gallons in its tank. Which of the following equations best models this situation?
\newline
Choose
1
1
1
answer:
\newline
(A)
13
−
23
h
60
=
10
13-\frac{23 h}{60}=10
13
−
60
23
h
=
10
\newline
(B)
13
−
60
h
23
=
10
13-\frac{60 h}{23}=10
13
−
23
60
h
=
10
\newline
(C)
13
−
60
h
23
=
10
\frac{13-60 h}{23}=10
23
13
−
60
h
=
10
\newline
(D)
13
−
23
h
60
=
10
\frac{13-23 h}{60}=10
60
13
−
23
h
=
10
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant