Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

An alternating current after passing through a rectifier has the form 
i={[i_(0)sin x",",0 <= x <= pi],[0",",pi <= x <= 2pi]:}
where 
i_(o) is the maximum current and the period is 
2pi. Express ' 
i ' in a Fourier series.
[Ans. 
i=(i_(0))/(2)+(i_(0))/(2)sin x-(2i_(0))/(pi)sum_("even ")^(oo)(cos nx)/(n^(2)-1)

33. An alternating current after passing through a rectifier has the form i={i0sinx,0xπ0,πx2π i=\left\{\begin{array}{ll}i_{0} \sin x, & 0 \leq x \leq \pi \\ 0, & \pi \leq x \leq 2 \pi\end{array}\right. \newlinewhere io i_{\mathrm{o}} is the maximum current and the period is 2π 2 \pi . Express ' i i ' in a Fourier series.\newline[Ans. i=i02+i02sinx2i0πeven cosnxn21 i=\frac{i_{0}}{2}+\frac{i_{0}}{2} \sin x-\frac{2 i_{0}}{\pi} \sum_{\text {even }}^{\infty} \frac{\cos n x}{n^{2}-1}

Full solution

Q. 33. An alternating current after passing through a rectifier has the form i={i0sinx,0xπ0,πx2π i=\left\{\begin{array}{ll}i_{0} \sin x, & 0 \leq x \leq \pi \\ 0, & \pi \leq x \leq 2 \pi\end{array}\right. \newlinewhere io i_{\mathrm{o}} is the maximum current and the period is 2π 2 \pi . Express ' i i ' in a Fourier series.\newline[Ans. i=i02+i02sinx2i0πeven cosnxn21 i=\frac{i_{0}}{2}+\frac{i_{0}}{2} \sin x-\frac{2 i_{0}}{\pi} \sum_{\text {even }}^{\infty} \frac{\cos n x}{n^{2}-1}
  1. Question Prompt: Question Prompt: Express the given piecewise function for alternating current in a Fourier series.
  2. Step 11: Step 11: Identify the function to be transformed into a Fourier series. The function is defined piecewise:\newlinei(x)={i0sin(x)for 0xπ, 0for π<x2π.i(x) = \begin{cases} i_0 \sin(x) & \text{for } 0 \leq x \leq \pi, \ 0 & \text{for } \pi < x \leq 2\pi. \end{cases}
  3. Step 22: Step 22: Write the general form of a Fourier series. A Fourier series is given by: i(x)=a02+n=1(ancos(nx)+bnsin(nx))i(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty}(a_n \cos(nx) + b_n \sin(nx)).
  4. Step 33: Step 33: Calculate the constant term a0a_0, which is the average value of the function over one period [0,2π][0, 2\pi]: \newlinea0=1π02πi(x)dxa_0 = \frac{1}{\pi} \int_{0}^{2\pi} i(x) \, dx\newline=1π(0πi0sin(x)dx+π2π0dx)= \frac{1}{\pi} \left(\int_{0}^{\pi} i_0 \sin(x) \, dx + \int_{\pi}^{2\pi} 0 \, dx\right)\newline=1π(i0[cos(x)]0π)= \frac{1}{\pi} \left(i_0 \left[ -\cos(x) \right]_{0}^{\pi}\right)\newline=1π(i0[cos(π)+cos(0)])= \frac{1}{\pi} \left(i_0 \left[ -\cos(\pi) + \cos(0) \right]\right)\newline=1π(i0[1+1])= \frac{1}{\pi} \left(i_0 \left[ 1 + 1 \right]\right)\newline=2i0π.= \frac{2i_0}{\pi}.

More problems from Find derivatives of sine and cosine functions