Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Also, product \newlinePP of zeroes \newlineα1α+1×β1β+1=1(α+1)(β+1)\frac{\alpha-1}{\alpha+1}\times\frac{\beta-1}{\beta+1}=\frac{1}{(\alpha+1)(\beta+1)}\newline=αβαβ+1αβ+α+β+1=αβ(α+β)+1αβ+(α+β)+1=32+13+2+1=26=13=\frac{\alpha \beta-\alpha-\beta+1}{\alpha \beta+\alpha+\beta+1}=\frac{\alpha \beta-(\alpha+\beta)+1}{\alpha \beta+(\alpha+\beta)+1}=\frac{3-2+1}{3+2+1}=\frac{2}{6}=\frac{1}{3}\newline:. Required quadratic polynomial, \newlinep(x)=kx2Sx+Pp(x)=k{x^{2}-Sx+P}\newlinep(x)=kx223x+13\Rightarrow p(x)=k{x^{2}-\frac{2}{3}x+\frac{1}{3}}. Example 3232 : If the product of the zeroes of the quadratic polynomial \newlinep(x)=ax26x6p(x)=ax^{2}-6x-6 is 44, then find the value of \newlineaa. Also, find the sum of the zeroes of the polynomial.\newlineSolution : We have, \newlinep(x)=ax26x6*p(x)=ax^{2}-6x-6. It is given that : \newlineαβ=4\alpha \beta=4\newlineLet \newlineα1α+1×β1β+1=1(α+1)(β+1)\frac{\alpha-1}{\alpha+1}\times\frac{\beta-1}{\beta+1}=\frac{1}{(\alpha+1)(\beta+1)}00 be the zeroes of the polynomial.

Full solution

Q. Also, product \newlinePP of zeroes \newlineα1α+1×β1β+1=1(α+1)(β+1)\frac{\alpha-1}{\alpha+1}\times\frac{\beta-1}{\beta+1}=\frac{1}{(\alpha+1)(\beta+1)}\newline=αβαβ+1αβ+α+β+1=αβ(α+β)+1αβ+(α+β)+1=32+13+2+1=26=13=\frac{\alpha \beta-\alpha-\beta+1}{\alpha \beta+\alpha+\beta+1}=\frac{\alpha \beta-(\alpha+\beta)+1}{\alpha \beta+(\alpha+\beta)+1}=\frac{3-2+1}{3+2+1}=\frac{2}{6}=\frac{1}{3}\newline:. Required quadratic polynomial, \newlinep(x)=kx2Sx+Pp(x)=k{x^{2}-Sx+P}\newlinep(x)=kx223x+13\Rightarrow p(x)=k{x^{2}-\frac{2}{3}x+\frac{1}{3}}. Example 3232 : If the product of the zeroes of the quadratic polynomial \newlinep(x)=ax26x6p(x)=ax^{2}-6x-6 is 44, then find the value of \newlineaa. Also, find the sum of the zeroes of the polynomial.\newlineSolution : We have, \newlinep(x)=ax26x6*p(x)=ax^{2}-6x-6. It is given that : \newlineαβ=4\alpha \beta=4\newlineLet \newlineα1α+1×β1β+1=1(α+1)(β+1)\frac{\alpha-1}{\alpha+1}\times\frac{\beta-1}{\beta+1}=\frac{1}{(\alpha+1)(\beta+1)}00 be the zeroes of the polynomial.
  1. Denote Zeroes of Polynomial: Let's denote the zeroes of the quadratic polynomial p(x)=ax26x6p(x) = ax^2 - 6x - 6 by α\alpha (alpha) and β\beta (beta). According to Vieta's formulas, the product of the zeroes of a quadratic polynomial ax2+bx+cax^2 + bx + c is ca\frac{c}{a}. We are given that the product of the zeroes is 44.
  2. Equation for Product of Zeroes: Using the given information, we can write the equation for the product of the zeroes as αβ=4\alpha\beta = 4. Since the constant term of the polynomial is 6-6, and the leading coefficient is aa, we have 6a=4\frac{-6}{a} = 4.
  3. Solving for Leading Coefficient: Solving the equation 6a=4-\frac{6}{a} = 4 for aa gives us a=64a = -\frac{6}{4}, which simplifies to a=32a = -\frac{3}{2}.
  4. Finding Sum of Zeroes: Now, we need to find the sum of the zeroes of the polynomial. According to Vieta's formulas, the sum of the zeroes of a quadratic polynomial ax2+bx+cax^2 + bx + c is b/a-b/a. In our case, the sum of the zeroes is (6)/a-(-6)/a, which simplifies to 6/a6/a.
  5. Finding Sum of Zeroes: Now, we need to find the sum of the zeroes of the polynomial. According to Vieta's formulas, the sum of the zeroes of a quadratic polynomial ax2+bx+cax^2 + bx + c is b/a-b/a. In our case, the sum of the zeroes is (6)/a-(-6)/a, which simplifies to 6/a6/a.Substituting the value of aa that we found earlier, we get the sum of the zeroes as 6/(3/2)6/(-3/2), which simplifies to 4-4.

More problems from Conjugate root theorems