Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A pool is being filled. The following function gives the pool's water level (in centimeters) after 
t seconds:

W(t)=4sqrtt+ln(t+1)
What is the instantaneous rate of change of the pool's water level after 100 seconds?
Choose 1 answer:
(A) 0.21 centimeters
B 0.21 centimeters per second
(C) 44.6 centimeters
(D) 44.6 centimeters per second

A pool is being filled. The following function gives the pool's water level (in centimeters) after t t seconds:\newlineW(t)=4t+ln(t+1) W(t)=4 \sqrt{t}+\ln (t+1) \newlineWhat is the instantaneous rate of change of the pool's water level after 100100 seconds?\newlineChoose 11 answer:\newline(A) 00.2121 centimeters\newline(B) 00.2121 centimeters per second\newline(C) 4444.66 centimeters\newline(D) 4444.66 centimeters per second

Full solution

Q. A pool is being filled. The following function gives the pool's water level (in centimeters) after t t seconds:\newlineW(t)=4t+ln(t+1) W(t)=4 \sqrt{t}+\ln (t+1) \newlineWhat is the instantaneous rate of change of the pool's water level after 100100 seconds?\newlineChoose 11 answer:\newline(A) 00.2121 centimeters\newline(B) 00.2121 centimeters per second\newline(C) 4444.66 centimeters\newline(D) 4444.66 centimeters per second
  1. Differentiate function W(t)W(t): To find the instantaneous rate of change, we need to differentiate the function W(t)W(t) with respect to tt.
    W(t)=4t+ln(t+1)W(t) = 4\sqrt{t} + \ln(t+1)
    Let's differentiate it.
    dWdt=ddt[4t]+ddt[ln(t+1)]\frac{dW}{dt} = \frac{d}{dt} [4\sqrt{t}] + \frac{d}{dt} [\ln(t+1)]
    dWdt=4(12)t12+1(t+1)\frac{dW}{dt} = 4 \cdot (\frac{1}{2}) \cdot t^{-\frac{1}{2}} + \frac{1}{(t+1)}
    dWdt=2t12+1(t+1)\frac{dW}{dt} = \frac{2}{t^{\frac{1}{2}}} + \frac{1}{(t+1)}
  2. Substitute t=100t = 100: Now we substitute t=100t = 100 into the derivative to find the rate of change at t=100t = 100 seconds.\newlinedWdt=2100(1/2)+1100+1\frac{dW}{dt} = \frac{2}{100^{(1/2)}} + \frac{1}{100+1}\newlinedWdt=210+1101\frac{dW}{dt} = \frac{2}{10} + \frac{1}{101}\newlinedWdt=0.2+0.00990099\frac{dW}{dt} = 0.2 + 0.00990099
  3. Calculate rate of change: Let's add these up to get the instantaneous rate of change. \newlinedWdt=0.2+0.00990099\frac{dW}{dt} = 0.2 + 0.00990099\newlinedWdt0.209901\frac{dW}{dt} \approx 0.209901
  4. Round to two decimal places: We round this to two decimal places as per the options given. dWdt0.21\frac{dW}{dt} \approx 0.21

More problems from Interpreting Linear Expressions