Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve CC has equation\newliney=x(sinx)x>0y>0y=x^{(\sin x)}\quad x > 0\quad y > 0\newline(a) Find, by firstly taking natural logarithms, an expression for (dy)/(dx)(dy)/(dx) in terms of xx and yy.

Full solution

Q. A curve CC has equation\newliney=x(sinx)x>0y>0y=x^{(\sin x)}\quad x > 0\quad y > 0\newline(a) Find, by firstly taking natural logarithms, an expression for (dy)/(dx)(dy)/(dx) in terms of xx and yy.
  1. Apply Logarithm Property: To find the derivative of yy with respect to xx, we will first take the natural logarithm of both sides of the equation y=x(sinx)y = x^{(\sin x)} to make use of the properties of logarithms.\newlineWe apply the logarithm to both sides:\newlineln(y)=ln(x(sinx))\ln(y) = \ln(x^{(\sin x)})\newlineUsing the property of logarithms that allows us to bring the exponent down in front of the log, we get:\newlineln(y)=sin(x)ln(x)\ln(y) = \sin(x) \cdot \ln(x)
  2. Differentiate with Chain and Product Rule: Now we differentiate both sides of the equation with respect to xx. The left side will use the chain rule, and the right side will use the product rule.\newlineDifferentiating the left side:\newlineddx[ln(y)]=1ydydx\frac{d}{dx} [\ln(y)] = \frac{1}{y} \cdot \frac{dy}{dx}\newlineDifferentiating the right side:\newline\frac{d}{dx} [\sin(x) \cdot \ln(x)] = \cos(x) \cdot \ln(x) + \sin(x) \cdot \left(\frac{\(1\)}{x}\right)
  3. Solve for \(\frac{dy}{dx}: Now we equate the derivatives from both sides to solve for dydx\frac{dy}{dx}.1ydydx=cos(x)ln(x)+sin(x)(1x)\frac{1}{y} \cdot \frac{dy}{dx} = \cos(x) \cdot \ln(x) + \sin(x) \cdot \left(\frac{1}{x}\right)To isolate dydx\frac{dy}{dx}, we multiply both sides by yy:dydx=y(cos(x)ln(x)+sin(x)(1x))\frac{dy}{dx} = y \cdot (\cos(x) \cdot \ln(x) + \sin(x) \cdot \left(\frac{1}{x}\right))
  4. Substitute back into Expression: We know from the original equation that y=x(sinx)y = x^{(\sin x)}, so we can substitute this back into our expression for dydx\frac{dy}{dx}.dydx=x(sinx)(cos(x)ln(x)+sin(x)(1x))\frac{dy}{dx} = x^{(\sin x)} \cdot (\cos(x) \cdot \ln(x) + \sin(x) \cdot (\frac{1}{x}))This is the expression for the derivative of yy with respect to xx in terms of xx and yy.

More problems from Complex conjugate theorem