Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the slope of the line?

2x-5y=9
Choose 1 answer:
(A) 
(5)/(2)
(B) 
(2)/(5)
(c) 
-(5)/(2)
(D) 
-(2)/(5)

What is the slope of the line?\newline2x5y=92x-5y=9\newlineChoose 11 answer:\newline(A) 52\frac{5}{2}\newline(B) 25\frac{2}{5}\newline(C) 52-\frac{5}{2}\newline(D) 25-\frac{2}{5}

Full solution

Q. What is the slope of the line?\newline2x5y=92x-5y=9\newlineChoose 11 answer:\newline(A) 52\frac{5}{2}\newline(B) 25\frac{2}{5}\newline(C) 52-\frac{5}{2}\newline(D) 25-\frac{2}{5}
  1. Isolating y: We start by isolating y on one side of the equation. We can do this by subtracting 2x2x from both sides of the equation:\newline2x5y=92x - 5y = 9\newline2x+2x5y=2x+9-2x + 2x - 5y = -2x + 9\newline5y=2x+9-5y = -2x + 9
  2. Dividing both sides: Next, we divide both sides of the equation by 5-5 to solve for yy:
    5y5=(2x+9)5\frac{-5y}{-5} = \frac{(-2x + 9)}{-5}
    y=(25)x95y = \left(\frac{2}{5}\right)x - \frac{9}{5}
  3. Identifying the slope: Now that we have the equation in slope-intercept form, we can identify the slope. The coefficient of xx in the equation y=25x95y = \frac{2}{5}x - \frac{9}{5} is the slope of the line.\newlineSo, the slope mm is 25\frac{2}{5}.

More problems from Domain and range