Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

7.7 Homework
Score: 
1//6quad1//6 answered
Question 2
Objective 2.17
Given 
A=[[-5,13,1],[3,-8,0],[0,0,1]],x= and 
b=[[350],[150],[400]]
Solve the matrix equation 
Ax=b for 
x
Submit Question

77.77 Homework\newlineScore: 1/61/6 1 / 6 \quad 1 / 6 answered\newlineQuestion 22\newlineObjective 22.1717\newlineGiven A=[5131380001],x= A=\left[\begin{array}{ccc}-5 & 13 & 1 \\ 3 & -8 & 0 \\ 0 & 0 & 1\end{array}\right], x= and b=[350150400] b=\left[\begin{array}{l}350 \\ 150 \\ 400\end{array}\right] \newlineSolve the matrix equation Ax=b A x=b for x x \newlineSubmit Question

Full solution

Q. 77.77 Homework\newlineScore: 1/61/6 1 / 6 \quad 1 / 6 answered\newlineQuestion 22\newlineObjective 22.1717\newlineGiven A=[5131380001],x= A=\left[\begin{array}{ccc}-5 & 13 & 1 \\ 3 & -8 & 0 \\ 0 & 0 & 1\end{array}\right], x= and b=[350150400] b=\left[\begin{array}{l}350 \\ 150 \\ 400\end{array}\right] \newlineSolve the matrix equation Ax=b A x=b for x x \newlineSubmit Question
  1. Find Inverse of Matrix A: First, we need to find the inverse of matrix AA, which is A1A^{-1}, so we can multiply both sides of the equation Ax=bAx=b by A1A^{-1} to get x=A1bx=A^{-1}b.
  2. Check Determinant of AA: To find the inverse of AA, we'll use the formula for the inverse of a 3×33 \times 3 matrix. But first, let's check if the determinant of AA is not zero, because if it is, the inverse doesn't exist.
  3. Calculate Cofactor Matrix: The determinant of AA is A=5(8)(1)+13(0)(1)+1(3)(0)1(8)(0)5(0)(1)13(3)(1)=400+00039=1|A| = -5(-8)(1) + 13(0)(1) + 1(3)(0) - 1(-8)(0) - 5(0)(1) - 13(3)(1) = 40 - 0 + 0 - 0 - 0 - 39 = 1.
  4. Transpose to Adjugate Matrix: Since the determinant is not zero, we can find the inverse. The inverse of AA is A1=1Aadj(A)A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A), where adj(A)\text{adj}(A) is the adjugate of AA.
  5. Calculate Inverse of AA: The adjugate of AA, adj(A)\text{adj}(A), is found by taking the transpose of the cofactor matrix of AA. Let's calculate the cofactor matrix first.
  6. Matrix Multiplication for xx: The cofactor matrix of AA is:\newline\text{Cof}(A) = \left[\begin{array}{ccc} (-1)^{1+1}\cdot(-8)\cdot(1) - (-0)\cdot(0), & (-1)^{1+2}\cdot(3)\cdot(1) - (0)\cdot(0), & (-1)^{1+3}\cdot(3)\cdot(-8) - (0)\cdot(13), \ (-1)^{2+1}\cdot(13)\cdot(1) - (1)\cdot(0), & (-1)^{2+2}\cdot(-5)\cdot(1) - (1)\cdot(0), & (-1)^{2+3}\cdot(-5)\cdot(0) - (1)\cdot(13), \ (-1)^{3+1}\cdot(13)\cdot(0) - (-8)\cdot(1), & (-1)^{3+2}\cdot(-5)\cdot(0) - (3)\cdot(1), & (-1)^{3+3}\cdot(-5)\cdot(-8) - (3)\cdot(13)\end{array}\right]\newline\text{Cof}(A) = \left[\begin{array}{ccc} -8, & -3, & 24, \ -13, & -5, & -13, \ 8, & -3, & 40\end{array}\right]
  7. Matrix Multiplication for xx: The cofactor matrix of AA is:\newline\text{Cof}(A) = \left[\begin{array}{ccc} (-1)^{1+1}\cdot(-8)(1) - (-0)(0), & (-1)^{1+2}\cdot(3)(1) - (0)(0), & (-1)^{1+3}\cdot(3)(-8) - (0)(13), \ (-1)^{2+1}\cdot(13)(1) - (1)(0), & (-1)^{2+2}\cdot(-5)(1) - (1)(0), & (-1)^{2+3}\cdot(-5)(0) - (1)(13), \ (-1)^{3+1}\cdot(13)(0) - (-8)(1), & (-1)^{3+2}\cdot(-5)(0) - (3)(1), & (-1)^{3+3}\cdot(-5)(-8) - (3)(13)\ \end{array}\right]\newline\text{Cof}(A) = \left[\begin{array}{ccc} -8, & -3, & 24, \ -13, & -5, & -13, \ 8, & -3, & 40\ \end{array}\right]Now, we transpose the cofactor matrix to get the adjugate matrix, adj(A)\text{adj}(A).\newline\text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\ \end{array}\right]
  8. Matrix Multiplication for xx: The cofactor matrix of AA is:\newline\text{Cof}(A) = \left[\begin{array}{ccc} (-1)^{1+1}\cdot(-8)\cdot(1) - (-0)\cdot(0), & (-1)^{1+2}\cdot(3)\cdot(1) - (0)\cdot(0), & (-1)^{1+3}\cdot(3)\cdot(-8) - (0)\cdot(13), \ (-1)^{2+1}\cdot(13)\cdot(1) - (1)\cdot(0), & (-1)^{2+2}\cdot(-5)\cdot(1) - (1)\cdot(0), & (-1)^{2+3}\cdot(-5)\cdot(0) - (1)\cdot(13), \ (-1)^{3+1}\cdot(13)\cdot(0) - (-8)\cdot(1), & (-1)^{3+2}\cdot(-5)\cdot(0) - (3)\cdot(1), & (-1)^{3+3}\cdot(-5)\cdot(-8) - (3)\cdot(13)\end{array}\right]\newline\text{Cof}(A) = \left[\begin{array}{ccc} -8, & -3, & 24, \ -13, & -5, & -13, \ 8, & -3, & 40\end{array}\right]Now, we transpose the cofactor matrix to get the adjugate matrix, adj(A)\text{adj}(A).\newline\text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]Next, we multiply the adjugate matrix by 1A\frac{1}{|A|} to get the inverse of AA, A1A^{-1}.\newlineA^{-1} = \frac{1}{1} \cdot \text{adj}(A) = \text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]
  9. Matrix Multiplication for xx: The cofactor matrix of AA is:\newline\text{Cof}(A) = \left[\begin{array}{ccc} (-1)^{1+1}\cdot(-8)\cdot(1) - (-0)\cdot(0), & (-1)^{1+2}\cdot(3)\cdot(1) - (0)\cdot(0), & (-1)^{1+3}\cdot(3)\cdot(-8) - (0)\cdot(13), \ (-1)^{2+1}\cdot(13)\cdot(1) - (1)\cdot(0), & (-1)^{2+2}\cdot(-5)\cdot(1) - (1)\cdot(0), & (-1)^{2+3}\cdot(-5)\cdot(0) - (1)\cdot(13), \ (-1)^{3+1}\cdot(13)\cdot(0) - (-8)\cdot(1), & (-1)^{3+2}\cdot(-5)\cdot(0) - (3)\cdot(1), & (-1)^{3+3}\cdot(-5)\cdot(-8) - (3)\cdot(13)\end{array}\right]\newline\text{Cof}(A) = \left[\begin{array}{ccc} -8, & -3, & 24, \ -13, & -5, & -13, \ 8, & -3, & 40\end{array}\right]Now, we transpose the cofactor matrix to get the adjugate matrix, adj(A)\text{adj}(A).\newline\text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]Next, we multiply the adjugate matrix by 1A\frac{1}{|A|} to get the inverse of AA, A1A^{-1}.\newlineA^{-1} = \frac{1}{1} \cdot \text{adj}(A) = \text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]Now we can find xx by multiplying A1A^{-1} with bb.\newlinex = A^{-1}b = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right] \cdot \left[\begin{array}{c} 350, \ 150, \ 400\end{array}\right]
  10. Matrix Multiplication for xx: The cofactor matrix of AA is:\newline\text{Cof}(A) = \left[\begin{array}{ccc} (-1)^{1+1}\cdot(-8)\cdot(1) - (-0)\cdot(0), & (-1)^{1+2}\cdot(3)\cdot(1) - (0)\cdot(0), & (-1)^{1+3}\cdot(3)\cdot(-8) - (0)\cdot(13), \ (-1)^{2+1}\cdot(13)\cdot(1) - (1)\cdot(0), & (-1)^{2+2}\cdot(-5)\cdot(1) - (1)\cdot(0), & (-1)^{2+3}\cdot(-5)\cdot(0) - (1)\cdot(13), \ (-1)^{3+1}\cdot(13)\cdot(0) - (-8)\cdot(1), & (-1)^{3+2}\cdot(-5)\cdot(0) - (3)\cdot(1), & (-1)^{3+3}\cdot(-5)\cdot(-8) - (3)\cdot(13)\end{array}\right]\newline\text{Cof}(A) = \left[\begin{array}{ccc} -8, & -3, & 24, \ -13, & -5, & -13, \ 8, & -3, & 40\end{array}\right]Now, we transpose the cofactor matrix to get the adjugate matrix, adj(A)\text{adj}(A).\newline\text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]Next, we multiply the adjugate matrix by 1A\frac{1}{|A|} to get the inverse of AA, A1A^{-1}.\newlineA^{-1} = \frac{1}{1} \cdot \text{adj}(A) = \text{adj}(A) = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right]Now we can find xx by multiplying A1A^{-1} with bb.\newlinex = A^{-1}b = \left[\begin{array}{ccc} -8, & -13, & 8, \ -3, & -5, & -3, \ 24, & -13, & 40\end{array}\right] \cdot \left[\begin{array}{c} 350, \ 150, \ 400\end{array}\right]Let's do the matrix multiplication.\newlinex = \left[\begin{array}{c} (-8)(350) + (-13)(150) + (8)(400), \ (-3)(350) + (-5)(150) + (-3)(400), \ (24)(350) + (-13)(150) + (40)(400)\end{array}\right]\newlinex = \left[\begin{array}{c} -2800 - 1950 + 3200, \ -1050 - 750 - 1200, \ 8400 - 1950 + 16000\end{array}\right]
  11. Matrix Multiplication for x: The cofactor matrix of A is:\newlineCof(A) = \left[\begin{array}{ccc}\(\newline(-1)^{1+1}\cdot(-8)\cdot(1) - (-0)\cdot(0), & (-1)^{1+2}\cdot(3)\cdot(1) - (0)\cdot(0), & (-1)^{1+3}\cdot(3)\cdot(-8) - (0)\cdot(13),(\newline\)(-1)^{2+1}\cdot(13)\cdot(1) - (1)\cdot(0), & (-1)^{2+2}\cdot(-5)\cdot(1) - (1)\cdot(0), & (-1)^{2+3}\cdot(-5)\cdot(0) - (1)\cdot(13),(\newline\)(-1)^{3+1}\cdot(13)\cdot(0) - (-8)\cdot(1), & (-1)^{3+2}\cdot(-5)\cdot(0) - (3)\cdot(1), & (-1)^{3+3}\cdot(-5)\cdot(-8) - (3)\cdot(13)\end{array}\right]\)\newlineCof(A) = \left[\begin{array}{ccc}\(\newline-8, & -3, & 24,(\newline\)-13, & -5, & -13,(\newline\)8, & -3, & 40\end{array}\right]\)Now, we transpose the cofactor matrix to get the adjugate matrix, adj(A).\newlineadj(A) = \left[\begin{array}{ccc}\(\newline-8, & -13, & 8,(\newline\)-3, & -5, & -3,(\newline\)24, & -13, & 40\end{array}\right]\)Next, we multiply the adjugate matrix by 1A\frac{1}{|A|} to get the inverse of A, A1A^{-1}.\newlineA^{-1} = \frac{1}{1} \cdot \text{adj}(A) = \text{adj}(A) = \left[\begin{array}{ccc}\(\newline-8, & -13, & 8,(\newline\)-3, & -5, & -3,(\newline\)24, & -13, & 40\end{array}\right]\)Now we can find x by multiplying A1A^{-1} with b.\newlinex = A^{-1}b = \left[\begin{array}{ccc}\(\newline-8, & -13, & 8,(\newline\)-3, & -5, & -3,(\newline\)24, & -13, & 40\end{array}\right] \cdot \left[\begin{array}{c}\newline350,(\newline\)150,(\newline\)400\end{array}\right]\)Let's do the matrix multiplication.\newlinex = \left[\begin{array}{c}\(\newline(-8)(350) + (-13)(150) + (8)(400),(\newline\)(-3)(350) + (-5)(150) + (-3)(400),(\newline\)(24)(350) + (-13)(150) + (40)(400)\end{array}\right]\)\newlinex = \left[\begin{array}{c}\(\newline-2800 - 1950 + 3200,(\newline\)-1050 - 750 - 1200,(\newline\)8400 - 1950 + 16000\end{array}\right]\)Now, we add the numbers in each row to get the final values for x.\newlinex = \left[\begin{array}{ccc}\(\newline-8, & -3, & 24,(\newline\)-13, & -5, & -13,(\newline\)8, & -3, & 40\end{array}\right]\)00

More problems from Euler's method