Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3 The equation of the curve is 
y=(e^(2x))/(3+4x).
(i) Find the coordinates of the stationary point on the curve, leaving your answer in exact value.

33 The equation of the curve is y=e2x3+4x y=\frac{e^{2 x}}{3+4 x} .\newline(i) Find the coordinates of the stationary point on the curve, leaving your answer in exact value.

Full solution

Q. 33 The equation of the curve is y=e2x3+4x y=\frac{e^{2 x}}{3+4 x} .\newline(i) Find the coordinates of the stationary point on the curve, leaving your answer in exact value.
  1. Quotient Rule Application: To find the derivative, we use the quotient rule: v(u)u(v)v2\frac{v(u') - u(v')}{v^2}, where u=e2xu = e^{2x} and v=3+4xv = 3+4x.
  2. Derivative of u: Differentiate uu with respect to xx: u=ddx(e2x)=2e2xu' = \frac{d}{dx}(e^{2x}) = 2e^{2x}.
  3. Derivative of vv: Differentiate vv with respect to xx: v=ddx(3+4x)=4v' = \frac{d}{dx}(3+4x) = 4.
  4. Numerator Simplification: Now apply the quotient rule: y=(3+4x)(2e2x)(e2x)(4)(3+4x)2y' = \frac{(3+4x)(2e^{2x}) - (e^{2x})(4)}{(3+4x)^2}.
  5. Combine Like Terms: Simplify the numerator: y=6e2x+8xe2x4e2x(3+4x)2y' = \frac{6e^{2x} + 8xe^{2x} - 4e^{2x}}{(3+4x)^2}.
  6. Stationary Points: Combine like terms in the numerator: y=2e2x+8xe2x(3+4x)2y' = \frac{2e^{2x} + 8xe^{2x}}{(3+4x)^2}.
  7. Numerator Factorization: Set the derivative equal to zero to find the stationary points: 0=(2e2x+8xe2x)(3+4x)2.0 = \frac{(2e^{2x} + 8xe^{2x})}{(3+4x)^2}.
  8. Remaining Factor: The numerator must be zero for the fraction to be zero: 2e2x+8xe2x=02e^{2x} + 8xe^{2x} = 0.
  9. Solving for xx: Factor out e2xe^{2x}: e2x(2+8x)=0e^{2x}(2 + 8x) = 0.
  10. Substitute xx into Equation: Since e(2x)e^{(2x)} is never zero, set the remaining factor equal to zero: 2+8x=02 + 8x = 0.
  11. Calculate Exponent: Solve for xx: 8x=28^x = -2.
  12. Calculate Denominator: Divide by 88: x = - rac{2}{8}.
  13. Find y-coordinate: Simplify the fraction: x=14x = -\frac{1}{4}.
  14. Stationary Point Coordinates: Now substitute x=14x = -\frac{1}{4} back into the original equation to find the yy-coordinate of the stationary point: y=e2(14)3+4(14)y = \frac{e^{2(-\frac{1}{4})}}{3+4(-\frac{1}{4})}.
  15. Stationary Point Coordinates: Now substitute x=14x = -\frac{1}{4} back into the original equation to find the yy-coordinate of the stationary point: y=e2(14)3+4(14)y = \frac{e^{2(-\frac{1}{4})}}{3+4(-\frac{1}{4})}.Calculate the exponent: e2(14)=e12e^{2(-\frac{1}{4})} = e^{-\frac{1}{2}}.
  16. Stationary Point Coordinates: Now substitute x=14x = -\frac{1}{4} back into the original equation to find the yy-coordinate of the stationary point: y=e2(14)3+4(14)y = \frac{e^{2(-\frac{1}{4})}}{3+4(-\frac{1}{4})}.Calculate the exponent: e2(14)=e12e^{2(-\frac{1}{4})} = e^{-\frac{1}{2}}.Calculate the denominator: 3+4(14)=31=23+4(-\frac{1}{4}) = 3-1 = 2.
  17. Stationary Point Coordinates: Now substitute x=14x = -\frac{1}{4} back into the original equation to find the y-coordinate of the stationary point: y=e2(14)3+4(14)y = \frac{e^{2(-\frac{1}{4})}}{3+4(-\frac{1}{4})}.Calculate the exponent: e2(14)=e12e^{2(-\frac{1}{4})} = e^{-\frac{1}{2}}.Calculate the denominator: 3+4(14)=31=23+4(-\frac{1}{4}) = 3-1 = 2.Now we have the y-coordinate: y=e122y = \frac{e^{-\frac{1}{2}}}{2}.
  18. Stationary Point Coordinates: Now substitute x=14x = -\frac{1}{4} back into the original equation to find the yy-coordinate of the stationary point: y=e2(14)3+4(14)y = \frac{e^{2(-\frac{1}{4})}}{3+4(-\frac{1}{4})}.Calculate the exponent: e2(14)=e12e^{2(-\frac{1}{4})} = e^{-\frac{1}{2}}.Calculate the denominator: 3+4(14)=31=23+4(-\frac{1}{4}) = 3-1 = 2.Now we have the yy-coordinate: y=e122y = \frac{e^{-\frac{1}{2}}}{2}.The coordinates of the stationary point are (14,e122)(-\frac{1}{4}, \frac{e^{-\frac{1}{2}}}{2}).

More problems from Find derivatives using logarithmic differentiation