Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

12). 
int(cos^(3)x)/(sin^(2)x-2)dx=

1212). cos3xsin2x2dx= \int \frac{\cos ^{3} x}{\sin ^{2} x-2} d x=

Full solution

Q. 1212). cos3xsin2x2dx= \int \frac{\cos ^{3} x}{\sin ^{2} x-2} d x=
  1. Simplify Integral: Let's start by simplifying the integral a bit. We can rewrite the integral as: (cos3(x)/sin2(x))dx2×(cos3(x))dx\int(\cos^3(x)/\sin^2(x))\,dx - 2 \times \int(\cos^3(x))\,dx
  2. First Integral Substitution: Now, let's tackle the first integral. We can use a substitution where u=sin(x)u = \sin(x), which means du=cos(x)dxdu = \cos(x)dx.
  3. First Integral Simplification: Substituting, we get: (cos2(x)u2)cos(x)dx=(1u2u2)du\int\left(\frac{\cos^2(x)}{u^2}\right) \cos(x)\,dx = \int\left(\frac{1-u^2}{u^2}\right)du
  4. First Integral Integration: This simplifies to: 1u2duu2u2du=1u2du1du\int \frac{1}{u^2}du - \int \frac{u^2}{u^2}du = \int \frac{1}{u^2}du - \int 1du
  5. Second Integral Approach: Now we can integrate: (1u2)du=1u\int(\frac{1}{u^2})du = -\frac{1}{u} and (1)du=u\int(1)du = u
  6. Second Integral Substitution: So the first part of the integral becomes: 1sin(x)+sin(x)-\frac{1}{\sin(x)} + \sin(x)
  7. Second Integral Integration: Now, let's look at the second integral, 2×(cos3(x))dx2 \times \int(\cos^3(x))\,dx. We can use a power-reducing formula for cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x).
  8. Combine Integrals: The integral becomes: 2cos(x)(1sin2(x))dx2 \int \cos(x) \cdot (1 - \sin^2(x))\,dx
  9. Simplify Expression: We can use the substitution u=sin(x)u = \sin(x) again, so du=cos(x)dxdu = \cos(x)dx.
  10. Correct Simplification: Substituting, we get: 2×(1u2)du2 \times \int (1 - u^2) \, du
  11. Correct Simplification: Substituting, we get:\newline2(1u2)du2 \int (1 - u^2) \, du Integrating, we find:\newline2(uu33)+C2 \left( u - \frac{u^3}{3} \right) + C
  12. Correct Simplification: Substituting, we get:\newline2(1u2)du2 \int (1 - u^2) \, du Integrating, we find:\newline2(uu33)+C2 \left( u - \frac{u^3}{3} \right) + C Substituting back sin(x)\sin(x) for uu, we get:\newline2(sin(x)sin3(x)3)+C2 \left( \sin(x) - \frac{\sin^3(x)}{3} \right) + C
  13. Correct Simplification: Substituting, we get:\newline2(1u2)du2 \int (1 - u^2) \, du Integrating, we find:\newline2(uu33)+C2 \cdot (u - \frac{u^3}{3}) + C Substituting back sin(x)\sin(x) for uu, we get:\newline2(sin(x)sin3(x)3)+C2 \cdot (\sin(x) - \frac{\sin^3(x)}{3}) + C Now, let's combine both parts of the integral:\newline(1sin(x)+sin(x))+(2(sin(x)sin3(x)3))+C(-\frac{1}{\sin(x)} + \sin(x)) + (2 \cdot (\sin(x) - \frac{\sin^3(x)}{3})) + C
  14. Correct Simplification: Substituting, we get:\newline2(1u2)du2 \int (1 - u^2) \, du Integrating, we find:\newline2(uu33)+C2 \left(u - \frac{u^3}{3}\right) + C Substituting back sin(x)\sin(x) for uu, we get:\newline2(sin(x)sin3(x)3)+C2 \left(\sin(x) - \frac{\sin^3(x)}{3}\right) + C Now, let's combine both parts of the integral:\newline(1sin(x)+sin(x))+(2(sin(x)sin3(x)3))+C\left(-\frac{1}{\sin(x)} + \sin(x)\right) + \left(2 \left(\sin(x) - \frac{\sin^3(x)}{3}\right)\right) + C Simplify the expression:\newline-\frac{\(1\)}{\sin(x)} + \(3\sin(x) - \left(\frac{22}{33}\right)\sin^33(x) + C
  15. Correct Simplification: Substituting, we get:\newline2(1u2)du2 \int (1 - u^2) \, du Integrating, we find:\newline2(uu33)+C2 \cdot (u - \frac{u^3}{3}) + C Substituting back sin(x)\sin(x) for uu, we get:\newline2(sin(x)sin3(x)3)+C2 \cdot (\sin(x) - \frac{\sin^3(x)}{3}) + C Now, let's combine both parts of the integral:\newline(1sin(x)+sin(x))+(2(sin(x)sin3(x)3))+C(-\frac{1}{\sin(x)} + \sin(x)) + (2 \cdot (\sin(x) - \frac{\sin^3(x)}{3})) + C Simplify the expression:\newline1sin(x)+3sin(x)23sin3(x)+C-\frac{1}{\sin(x)} + 3\sin(x) - \frac{2}{3}\sin^3(x) + C Oops, we made a mistake in the simplification. The correct simplification should be:\newline1sin(x)+sin(x)+2sin(x)23sin3(x)+C-\frac{1}{\sin(x)} + \sin(x) + 2\sin(x) - \frac{2}{3}\sin^3(x) + C

More problems from Evaluate definite integrals using the power rule