Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1010 a Use a calculator to find\newline11.11 Irrational numbers\newlinei \newline(2+1)×(21)(\sqrt{2}+1)\times(\sqrt{2}-1)\newlineii \newline(3+1)×(31)(\sqrt{3}+1)\times(\sqrt{3}-1)\newlineb Continue the pattern of the multiplications in part a.\newlineiii \newline(4+1)×(41)(\sqrt{4}+1)\times(\sqrt{4}-1)\newlinec Generalise the results to find \newline(N+1)×(N1)(\sqrt{N}+1)\times(\sqrt{N}-1) where \newlineNN is a positive integer.\newlined Check your generalisation with further examples.\newline1111 Here is a decimal: 5.0200200020000200005.020020002000020000 examples.

Full solution

Q. 1010 a Use a calculator to find\newline11.11 Irrational numbers\newlinei \newline(2+1)×(21)(\sqrt{2}+1)\times(\sqrt{2}-1)\newlineii \newline(3+1)×(31)(\sqrt{3}+1)\times(\sqrt{3}-1)\newlineb Continue the pattern of the multiplications in part a.\newlineiii \newline(4+1)×(41)(\sqrt{4}+1)\times(\sqrt{4}-1)\newlinec Generalise the results to find \newline(N+1)×(N1)(\sqrt{N}+1)\times(\sqrt{N}-1) where \newlineNN is a positive integer.\newlined Check your generalisation with further examples.\newline1111 Here is a decimal: 5.0200200020000200005.020020002000020000 examples.
  1. Calculate Formula: Calculate (2+1)×(21)(\sqrt{2}+1)\times(\sqrt{2}-1) Use the difference of squares formula: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2 Here, a=2a = \sqrt{2} and b=1b = 1. (2+1)×(21)=(2)2(1)2=21=1(\sqrt{2}+1)\times(\sqrt{2}-1) = (\sqrt{2})^2 - (1)^2 = 2 - 1 = 1
  2. Use Difference of Squares: Calculate (3+1)×(31)(\sqrt{3}+1)\times(\sqrt{3}-1)\newlineAgain, use the difference of squares formula: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newlineHere, a=3a = \sqrt{3} and b=1b = 1.\newline(3+1)×(31)=(3)2(1)2(\sqrt{3}+1)\times(\sqrt{3}-1) = (\sqrt{3})^2 - (1)^2\newline=31= 3 - 1\newline=2= 2
  3. Calculate Result: Calculate (4+1)×(41)(\sqrt{4}+1)\times(\sqrt{4}-1) Use the difference of squares formula: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2 Here, a=4a = \sqrt{4} and b=1b = 1. (4+1)×(41)=(4)2(1)2=41=3(\sqrt{4}+1)\times(\sqrt{4}-1) = (\sqrt{4})^2 - (1)^2 = 4 - 1 = 3
  4. Generalize for N\sqrt{N}: Generalize the result for (N+1)×(N1)(\sqrt{N}+1)\times(\sqrt{N}-1) Using the pattern from the previous steps, we can generalize: (\sqrt{N}+\(1)\times(\sqrt{N}1-1) = (\sqrt{N})^22 - (11)^22 = N - 11
  5. Check with Examples: Check the generalization with further examples\newlineLet's check with N=5N = 5 and N=6N = 6:\newlineFor N=5N = 5:\newline(5+1)×(51)=(5)2(1)2(\sqrt{5}+1)\times(\sqrt{5}-1) = (\sqrt{5})^2 - (1)^2\newline=51= 5 - 1\newline=4= 4\newlineFor N=6N = 6:\newline(6+1)×(61)=(6)2(1)2(\sqrt{6}+1)\times(\sqrt{6}-1) = (\sqrt{6})^2 - (1)^2\newline=61= 6 - 1\newline=5= 5\newlineBoth results match the generalization.

More problems from Negative exponents