Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Доказать, что касательные плоскости к конусу z=xf(y/x) z = xf(y/x) проходят через его вершину

Full solution

Q. Доказать, что касательные плоскости к конусу z=xf(y/x) z = xf(y/x) проходят через его вершину
  1. Find Tangent Plane Equation: Let's first find the equation of the tangent plane to the cone at a point (x0,y0,z0)(x_0, y_0, z_0) where z0=x0f(y0/x0)z_0 = x_0f(y_0/x_0). To find the equation of the tangent plane, we need to calculate the partial derivatives of zz with respect to xx and yy at the point (x0,y0)(x_0, y_0).
  2. Calculate Partial Derivatives: The partial derivative of zz with respect to xx is given by:\newlinezx=f(yx)+xf(yx)(yx2)=f(yx)(yx)f(yx)\frac{\partial z}{\partial x} = f\left(\frac{y}{x}\right) + x f'\left(\frac{y}{x}\right)\left(-\frac{y}{x^2}\right) = f\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)f'\left(\frac{y}{x}\right)\newlineWe evaluate this derivative at the point (x0,y0)(x_0, y_0).
  3. Equation of Tangent Plane: The partial derivative of zz with respect to yy is given by: zy=x(1x)f(yx)=f(yx)\frac{\partial z}{\partial y} = x(\frac{1}{x})f'(\frac{y}{x}) = f'(\frac{y}{x}) We evaluate this derivative at the point (x0,y0)(x_0, y_0).
  4. Check Vertex Satisfaction: The equation of the tangent plane at the point (x0,y0,z0)(x_0, y_0, z_0) is then:\newlinezz0=(zx)(x0,y0)(xx0)+(zy)(x0,y0)(yy0)z - z_0 = \left(\frac{\partial z}{\partial x}\right)\bigg|_{(x_0, y_0)}(x - x_0) + \left(\frac{\partial z}{\partial y}\right)\bigg|_{(x_0, y_0)}(y - y_0)\newlineSubstituting the partial derivatives we found, we get:\newlinezx0f(y0x0)=[f(y0x0)(y0x0)f(y0x0)](xx0)+f(y0x0)(yy0)z - x_0f\left(\frac{y_0}{x_0}\right) = \left[f\left(\frac{y_0}{x_0}\right) - \left(\frac{y_0}{x_0}\right)f'\left(\frac{y_0}{x_0}\right)\right](x - x_0) + f'\left(\frac{y_0}{x_0}\right)(y - y_0)
  5. Simplify Equation: Now, we need to check if the vertex of the cone, which is the origin (0,0,0)(0, 0, 0), satisfies the equation of the tangent plane. If we substitute x=0x = 0, y=0y = 0, and z=0z = 0 into the equation of the tangent plane, we should get a true statement if the tangent plane passes through the vertex.
  6. Conclusion: Substituting x=0x = 0, y=0y = 0, and z=0z = 0 into the equation of the tangent plane, we get:\newline0x0f(y0/x0)=[f(y0/x0)(y0/x0)f(y0/x0)](0x0)+f(y0/x0)(0y0)0 - x_0f(y_0/x_0) = [f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)](0 - x_0) + f'(y_0/x_0)(0 - y_0)\newlineSimplifying, we get:\newlinex0f(y0/x0)=x0[f(y0/x0)(y0/x0)f(y0/x0)]y0f(y0/x0)-x_0f(y_0/x_0) = -x_0[f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)] - y_0f'(y_0/x_0)
  7. Conclusion: Substituting x=0x = 0, y=0y = 0, and z=0z = 0 into the equation of the tangent plane, we get:\newline0x0f(y0/x0)=[f(y0/x0)(y0/x0)f(y0/x0)](0x0)+f(y0/x0)(0y0)0 - x_0f(y_0/x_0) = [f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)](0 - x_0) + f'(y_0/x_0)(0 - y_0)\newlineSimplifying, we get:\newlinex0f(y0/x0)=x0[f(y0/x0)(y0/x0)f(y0/x0)]y0f(y0/x0)-x_0f(y_0/x_0) = -x_0[f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)] - y_0f'(y_0/x_0)Notice that the terms on the right side of the equation can be grouped to cancel each other out:\newlinex0f(y0/x0)=x0f(y0/x0)+x0(y0/x0)f(y0/x0)y0f(y0/x0)-x_0f(y_0/x_0) = -x_0f(y_0/x_0) + x_0(y_0/x_0)f'(y_0/x_0) - y_0f'(y_0/x_0)\newlineThe terms x0(y0/x0)f(y0/x0)x_0(y_0/x_0)f'(y_0/x_0) and y0f(y0/x0)-y_0f'(y_0/x_0) cancel each other out, leaving us with:\newlinex0f(y0/x0)=x0f(y0/x0)-x_0f(y_0/x_0) = -x_0f(y_0/x_0)
  8. Conclusion: Substituting x=0x = 0, y=0y = 0, and z=0z = 0 into the equation of the tangent plane, we get: \newline0x0f(y0/x0)=[f(y0/x0)(y0/x0)f(y0/x0)](0x0)+f(y0/x0)(0y0)0 - x_0f(y_0/x_0) = [f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)](0 - x_0) + f'(y_0/x_0)(0 - y_0)\newlineSimplifying, we get: \newlinex0f(y0/x0)=x0[f(y0/x0)(y0/x0)f(y0/x0)]y0f(y0/x0)-x_0f(y_0/x_0) = -x_0[f(y_0/x_0) - (y_0/x_0)f'(y_0/x_0)] - y_0f'(y_0/x_0)Notice that the terms on the right side of the equation can be grouped to cancel each other out: \newlinex0f(y0/x0)=x0f(y0/x0)+x0(y0/x0)f(y0/x0)y0f(y0/x0)-x_0f(y_0/x_0) = -x_0f(y_0/x_0) + x_0(y_0/x_0)f'(y_0/x_0) - y_0f'(y_0/x_0)\newlineThe terms x0(y0/x0)f(y0/x0)x_0(y_0/x_0)f'(y_0/x_0) and y0f(y0/x0)-y_0f'(y_0/x_0) cancel each other out, leaving us with: \newlinex0f(y0/x0)=x0f(y0/x0)-x_0f(y_0/x_0) = -x_0f(y_0/x_0)Since both sides of the equation are equal, we have shown that the origin (0,0,0)(0, 0, 0) satisfies the equation of the tangent plane. Therefore, the tangent plane to the cone y=0y = 000 at any point y=0y = 011 passes through the vertex of the cone.

More problems from Find derivatives using the quotient rule II