Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(t+(8)/(3))(t+b)=0
In the given equation, 
b is a constant. If 
-(8)/(3) and 
(13)/(3) are solutions to the equation, then what is the value of 
b ?
Choose 1 answer:
(A) 
-(13)/(3)
(B) 
-(8)/(3)
(C) 
(8)/(3)
(D) 
(13)/(3)

(t+83)(t+b)=0 \left(t+\frac{8}{3}\right)(t+b)=0 \newlineIn the given equation, b b is a constant. If 83 -\frac{8}{3} and 133 \frac{13}{3} are solutions to the equation, then what is the value of b b ?\newlineChoose 11 answer:\newline(A) 133 -\frac{13}{3} \newline(B) 83 -\frac{8}{3} \newline(C) 83 \frac{8}{3} \newline(D) 133 \frac{13}{3}

Full solution

Q. (t+83)(t+b)=0 \left(t+\frac{8}{3}\right)(t+b)=0 \newlineIn the given equation, b b is a constant. If 83 -\frac{8}{3} and 133 \frac{13}{3} are solutions to the equation, then what is the value of b b ?\newlineChoose 11 answer:\newline(A) 133 -\frac{13}{3} \newline(B) 83 -\frac{8}{3} \newline(C) 83 \frac{8}{3} \newline(D) 133 \frac{13}{3}
  1. Given Equation Analysis: We are given the equation (t+83)(t+b)=0(t+\frac{8}{3})(t+b)=0 and told that 83-\frac{8}{3} and 133\frac{13}{3} are solutions to this equation. This means that when we substitute tt with either 83-\frac{8}{3} or 133\frac{13}{3}, the equation should be satisfied.
  2. Substitute First Solution: First, let's substitute tt with the first solution 83-\frac{8}{3} into the equation and see if it satisfies the equation.\newline(t+83)(t+b)=0(t+\frac{8}{3})(t+b)=0\newlineSubstitute t=83t = -\frac{8}{3}:\newline((83)+83)((83)+b)=0((-\frac{8}{3})+\frac{8}{3})((-\frac{8}{3})+b)=0
  3. Simplify First Substitution: Simplify the expression:\newline(0)(((8)/(3))+b)=0(0)(((8)/(3))+b)=0\newlineSince anything multiplied by 00 is 00, this part of the equation is satisfied regardless of the value of bb.
  4. Substitute Second Solution: Now, let's substitute tt with the second solution 133\frac{13}{3} into the equation.(t+83)(t+b)=0(t+\frac{8}{3})(t+b)=0Substitute t=133t = \frac{13}{3}:((133)+83)((133)+b)=0\left(\left(\frac{13}{3}\right)+\frac{8}{3}\right)\left(\left(\frac{13}{3}\right)+b\right)=0
  5. Simplify Second Substitution: Simplify the expression:\newline213(133+b)=0\frac{21}{3}\left(\frac{13}{3}+b\right)=0\newlineSince 213\frac{21}{3} is 77 and 77 is not equal to 00, the only way for the product to be 00 is if the second factor is 00.
  6. Solve for b: Set the second factor equal to zero and solve for b: \newline(133)+b=0\left(\frac{13}{3}\right)+b=0\newlineb=(133)b = -\left(\frac{13}{3}\right)
  7. Final Answer: We have found the value of bb that satisfies the equation when tt is 133\frac{13}{3}. Since the problem asks for the value of bb, we have our answer.

More problems from Domain and range