Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

В правильной шестиугольной пирамиде 
SABCDEF, стороны основания которой равны 1 , а боковые ребра равны 2 , найдите косинус угла между плоскостями 
SAF и 
SBC

В правильной шестиугольной пирамиде SABCDEF S A B C D E F , стороны основания которой равны 11 , а боковые ребра равны 22 , найдите косинус угла между плоскостями SAF S A F и SBC S B C

Full solution

Q. В правильной шестиугольной пирамиде SABCDEF S A B C D E F , стороны основания которой равны 11 , а боковые ребра равны 22 , найдите косинус угла между плоскостями SAF S A F и SBC S B C
  1. Find Pyramid Height: Let's find the height of the pyramid using the Pythagorean theorem for triangle SMOSMO, where MM is the center of the hexagon and OO is the foot of the height from SS. The distance MOMO is the radius of the circumscribed circle around the base, which is 3/2\sqrt{3}/2 * side of the hexagon. So, MO=(3/2)1=3/2MO = (\sqrt{3}/2) * 1 = \sqrt{3}/2. Using SOSO as the height hh, we have SM=3/2SM = \sqrt{3}/2 and MM00, and the hypotenuse is the lateral edge, which is MM11. The Pythagorean theorem gives us MM22.
  2. Calculate Height: Now we calculate the height hh. h2+34=4h^2 + \frac{3}{4} = 4. So, h2=434=16434=134h^2 = 4 - \frac{3}{4} = \frac{16}{4} - \frac{3}{4} = \frac{13}{4}. Therefore, h=134=132h = \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2}.
  3. Find Triangle Areas: Next, we need to find the area of triangle SAFSAF. Since it's a right triangle at AA, the area is (1/2)×base×height=(1/2)×1×13/2=13/4(1/2) \times \text{base} \times \text{height} = (1/2) \times 1 \times \sqrt{13}/2 = \sqrt{13}/4.
  4. Find Cosine of Angle: We do the same for triangle SBCSBC. Since it's also a right triangle at BB, the area is (1/2)×base×height=(1/2)×1×13/2=13/4(1/2) \times \text{base} \times \text{height} = (1/2) \times 1 \times \sqrt{13}/2 = \sqrt{13}/4.
  5. Calculate Normal Vectors: Now, let's find the cosine of the angle between the planes using the dot product of their normal vectors. The normal vector for plane SAF can be found using cross product of vectors SA and SF. Let's assume SA=(0,0,13/2)SA = (0, 0, \sqrt{13}/2) and SF=(1,0,13/2)SF = (1, 0, \sqrt{13}/2). The cross product gives us a normal vector n1n_1.
  6. Calculate Normal Vectors: Now, let's find the cosine of the angle between the planes using the dot product of their normal vectors. The normal vector for plane SAF can be found using cross product of vectors SA and SF. Let's assume SA=(0,0,13/2)SA = (0, 0, \sqrt{13}/2) and SF=(1,0,13/2)SF = (1, 0, \sqrt{13}/2). The cross product gives us a normal vector n1n_1.Calculating the cross product, n1=SA×SF=ijk 0013/2 1013/2=(0i(13/2)j)((00)k)=(0,13/2,0)n_1 = SA \times SF = \left| \begin{array}{ccc} i & j & k \ 0 & 0 & \sqrt{13}/2 \ 1 & 0 & \sqrt{13}/2 \end{array} \right| = (0i - (\sqrt{13}/2)j) - ((0 - 0)k) = (0, -\sqrt{13}/2, 0).
  7. Calculate Normal Vectors: Now, let's find the cosine of the angle between the planes using the dot product of their normal vectors. The normal vector for plane SAF can be found using cross product of vectors SA and SF. Let's assume SA=(0,0,13/2)SA = (0, 0, \sqrt{13}/2) and SF=(1,0,13/2)SF = (1, 0, \sqrt{13}/2). The cross product gives us a normal vector n1n_1.Calculating the cross product, n1=SA×SF=ijk 0013/2 1013/2=(0i(13/2)j)((00)k)=(0,13/2,0)n_1 = SA \times SF = \left| \begin{array}{ccc} i & j & k \ 0 & 0 & \sqrt{13}/2 \ 1 & 0 & \sqrt{13}/2 \end{array} \right| = (0i - (\sqrt{13}/2)j) - ((0 - 0)k) = (0, -\sqrt{13}/2, 0).We find the normal vector for plane SBC in a similar way. Assume SB=(0,0,13/2)SB = (0, 0, \sqrt{13}/2) and SC=(cos(60),sin(60),13/2)SC = (\cos(60), \sin(60), \sqrt{13}/2). The cross product gives us a normal vector n2n_2.
  8. Calculate Normal Vectors: Now, let's find the cosine of the angle between the planes using the dot product of their normal vectors. The normal vector for plane SAF can be found using cross product of vectors SA and SF. Let's assume SA=(0,0,13/2)SA = (0, 0, \sqrt{13}/2) and SF=(1,0,13/2)SF = (1, 0, \sqrt{13}/2). The cross product gives us a normal vector n1n_1.Calculating the cross product, n1=SA×SF=ijk 0013/2 1013/2=(0i(13/2)j)((00)k)=(0,13/2,0)n_1 = SA \times SF = \left| \begin{array}{ccc} i & j & k \ 0 & 0 & \sqrt{13}/2 \ 1 & 0 & \sqrt{13}/2 \end{array} \right| = (0i - (\sqrt{13}/2)j) - ((0 - 0)k) = (0, -\sqrt{13}/2, 0).We find the normal vector for plane SBC in a similar way. Assume SB=(0,0,13/2)SB = (0, 0, \sqrt{13}/2) and SC=(cos(60),sin(60),13/2)SC = (\cos(60), \sin(60), \sqrt{13}/2). The cross product gives us a normal vector n2n_2.Calculating the cross product, n2=SB×SC=ijk 0013/2 1/23/213/2=(0i(13/2)j)((00)k)=(0,13/2,0)n_2 = SB \times SC = \left| \begin{array}{ccc} i & j & k \ 0 & 0 & \sqrt{13}/2 \ 1/2 & \sqrt{3}/2 & \sqrt{13}/2 \end{array} \right| = (0i - (\sqrt{13}/2)j) - ((0 - 0)k) = (0, -\sqrt{13}/2, 0).