Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Визначити опорні реакції балки, якщо q=10q=10 кН/м, Р=10Р=10кН АС=3АС = 3 м, АВ=5АВ = 5 м і кут ф=30°ф=30°.

Full solution

Q. Визначити опорні реакції балки, якщо q=10q=10 кН/м, Р=10Р=10кН АС=3АС = 3 м, АВ=5АВ = 5 м і кут ф=30°ф=30°.
  1. Calculate total distributed load: First, we need to calculate the total distributed load on the beam due to the uniform load qq. The total load will be qq multiplied by the length of the beam ABAB.
    Total distributed load (Q)=q×AB(Q) = q \times AB
    Q=10kN/m×5mQ = 10 \, \text{kN/m} \times 5 \, \text{m}
  2. Resolve point load components: Calculate the total distributed load. Q=50Q = 50 kN
  3. Calculate vertical and horizontal components: Next, we need to resolve the point load PP into horizontal and vertical components because it is applied at an angle φ\varphi. The vertical component (PvP_v) will be P×cos(φ)P \times \cos(\varphi) and the horizontal component (PhP_h) will be P×sin(φ)P \times \sin(\varphi).\newlinePv=P×cos(φ)P_v = P \times \cos(\varphi)\newlinePh=P×sin(φ)P_h = P \times \sin(\varphi)
  4. Calculate reactions at supports: Calculate the vertical and horizontal components of the point load PP.Pv=10kNcos(30°)P_v = 10 \, \text{kN} \cdot \cos(30°)Ph=10kNsin(30°)P_h = 10 \, \text{kN} \cdot \sin(30°)
  5. Substitute values into equilibrium equation: Using the trigonometric values, cos(30°)=3/2\cos(30°) = \sqrt{3}/2 and sin(30°)=1/2\sin(30°) = 1/2, calculate PvP_v and PhP_h.\newlinePv=10kN×3/2P_v = 10 \, \text{kN} \times \sqrt{3}/2\newlinePh=10kN×1/2P_h = 10 \, \text{kN} \times 1/2
  6. Consider moments around support A: Calculate the actual values for PvP_v and PhP_h. \newlinePv=10kN×3/28.66kNP_v = 10 \, \text{kN} \times \sqrt{3}/2 \approx 8.66 \, \text{kN}\newlinePh=10kN×1/2=5kNP_h = 10 \, \text{kN} \times 1/2 = 5 \, \text{kN}
  7. Simplify equation to find RbR_b: Now, we will calculate the reactions at the supports. Let's denote the reaction at support A as RaR_a and at support B as RbR_b. Since the beam is in static equilibrium, the sum of vertical forces must be zero.\newlineFy=0=Ra+RbQPv\sum F_y = 0 = R_a + R_b - Q - P_v
  8. Calculate reaction at support B: Substitute the known values into the equilibrium equation for vertical forces.\newline0=Ra+Rb50kN8.66kN0 = R_a + R_b - 50\,\text{kN} - 8.66\,\text{kN}
  9. Use sum of vertical reactions for RaRa: Simplify the equation to find the sum of the reactions RaRa and RbRb. \newlineRa+Rb=58.66kNRa + Rb = 58.66 \, \text{kN}
  10. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (\frac{AB}{2}) - P_v \cdot AC
  11. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive). MA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot AC Substitute the known values into the moment equilibrium equation around point A. 0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}
  12. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot ACSubstitute the known values into the moment equilibrium equation around point A.\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}Calculate the moment due to the distributed load and the point load.\newline0=Rb5m125kNm25.98kNm0 = R_b \cdot 5 \, \text{m} - 125 \, \text{kN} \cdot \text{m} - 25.98 \, \text{kN} \cdot \text{m}
  13. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot ACSubstitute the known values into the moment equilibrium equation around point A.\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5\,\text{m} - 50\,\text{kN} \cdot (5\,\text{m}/2) - 8.66\,\text{kN} \cdot 3\,\text{m}Calculate the moment due to the distributed load and the point load.\newline0=Rb5m125kNm25.98kNm0 = R_b \cdot 5\,\text{m} - 125\,\text{kN}\cdot\text{m} - 25.98\,\text{kN}\cdot\text{m}Simplify the equation to solve for Rb.\newlineRb5m=150.98kNmR_b \cdot 5\,\text{m} = 150.98\,\text{kN}\cdot\text{m}\newlineRb=150.98kNm5mR_b = \frac{150.98\,\text{kN}\cdot\text{m}}{5\,\text{m}}
  14. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot ACSubstitute the known values into the moment equilibrium equation around point A.\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}Calculate the moment due to the distributed load and the point load.\newline0=Rb5m125kNm25.98kNm0 = R_b \cdot 5 \, \text{m} - 125 \, \text{kN} \cdot \text{m} - 25.98 \, \text{kN} \cdot \text{m}Simplify the equation to solve for RbR_b.\newlineRb5m=150.98kNmR_b \cdot 5 \, \text{m} = 150.98 \, \text{kN} \cdot \text{m}\newlineRb=150.98kNm5mR_b = \frac{150.98 \, \text{kN} \cdot \text{m}}{5 \, \text{m}}Calculate the reaction at support B (RbR_b).\newlineRb=30.196kNR_b = 30.196 \, \text{kN}
  15. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot ACSubstitute the known values into the moment equilibrium equation around point A.\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}Calculate the moment due to the distributed load and the point load.\newline0=Rb5m125kNm25.98kNm0 = R_b \cdot 5 \, \text{m} - 125 \, \text{kN} \cdot \text{m} - 25.98 \, \text{kN} \cdot \text{m}Simplify the equation to solve for RbR_b.\newlineRb5m=150.98kNmR_b \cdot 5 \, \text{m} = 150.98 \, \text{kN} \cdot \text{m}\newlineRb=150.98kNm5mR_b = \frac{150.98 \, \text{kN} \cdot \text{m}}{5 \, \text{m}}Calculate the reaction at support B (RbR_b).\newlineRb=30.196kNR_b = 30.196 \, \text{kN}Now, use the sum of the vertical reactions to find RaR_a.\newlineRa+30.196kN=58.66kNR_a + 30.196 \, \text{kN} = 58.66 \, \text{kN}\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}00
  16. Calculate reaction at support A: To find the individual reactions, we also need to consider the moments around one of the supports. Let's take moments around support A (counterclockwise positive).\newlineMA=0=RbABQ(AB/2)PvAC\sum M_A = 0 = R_b \cdot AB - Q \cdot (AB/2) - P_v \cdot ACSubstitute the known values into the moment equilibrium equation around point A.\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}Calculate the moment due to the distributed load and the point load.\newline0=Rb5m125kNm25.98kNm0 = R_b \cdot 5 \, \text{m} - 125 \, \text{kN} \cdot \text{m} - 25.98 \, \text{kN} \cdot \text{m}Simplify the equation to solve for RbR_b.\newlineRb5m=150.98kNmR_b \cdot 5 \, \text{m} = 150.98 \, \text{kN} \cdot \text{m}\newlineRb=150.98kNm5mR_b = \frac{150.98 \, \text{kN} \cdot \text{m}}{5 \, \text{m}}Calculate the reaction at support B (RbR_b).\newlineRb=30.196kNR_b = 30.196 \, \text{kN}Now, use the sum of the vertical reactions to find RaR_a.\newlineRa+30.196kN=58.66kNR_a + 30.196 \, \text{kN} = 58.66 \, \text{kN}\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}00Calculate the reaction at support A (RaR_a).\newline0=Rb5m50kN(5m/2)8.66kN3m0 = R_b \cdot 5 \, \text{m} - 50 \, \text{kN} \cdot (5 \, \text{m}/2) - 8.66 \, \text{kN} \cdot 3 \, \text{m}22

More problems from Write equations of cosine functions using properties