Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

вычислить L(x+y)dL \int_L (x+y) \, dL , где L L - правый лепесток r2=a2cos(2φ) r^2 = a^2\cos(2\varphi)

Full solution

Q. вычислить L(x+y)dL \int_L (x+y) \, dL , где L L - правый лепесток r2=a2cos(2φ) r^2 = a^2\cos(2\varphi)
  1. Convert to Polar Coordinates: Let's first express the integral in polar coordinates since the given curve is already in polar form. In polar coordinates, x=rcos(φ)x = r\cos(\varphi) and y=rsin(φ)y = r\sin(\varphi). The curve LL is defined by r2=a2cos(2φ)r^2 = a^2\cos(2\varphi), which simplifies to r=acos(2φ)r = a\sqrt{\cos(2\varphi)} for the right petal. We need to find the bounds for φ\varphi that correspond to the right petal.
  2. Find Bounds for φ\varphi: The right petal of the curve r2=a2cos(2φ)r^2 = a^2\cos(2\varphi) corresponds to the values of φ\varphi for which cos(2φ)\cos(2\varphi) is positive. This occurs when 2φ2\varphi is between π2-\frac{\pi}{2} and π2\frac{\pi}{2}, which means φ\varphi is between π4-\frac{\pi}{4} and π4\frac{\pi}{4}. These are the bounds for our integral.
  3. Compute drdφ\frac{dr}{d\varphi}: Now we can set up the integral in polar coordinates. The differential arc length in polar coordinates is given by dL=r2+(drdφ)2dφdL = \sqrt{r^2 + \left(\frac{dr}{d\varphi}\right)^2} d\varphi. We need to compute drdφ\frac{dr}{d\varphi} for our curve.
  4. Simplify Expression for dLdL: Differentiating rr with respect to φ\varphi, we get drdφ=ddφ(acos(2φ))=a(sin(2φ))/cos(2φ)\frac{dr}{d\varphi} = \frac{d}{d\varphi} (a\sqrt{\cos(2\varphi)}) = a\left(-\sin(2\varphi)\right)/\sqrt{\cos(2\varphi)}. We need to square this and add it to r2r^2 to find the expression for dLdL.
  5. Write Integral in Polar Coordinates: Squaring drdφ\frac{dr}{d\varphi}, we get (drdφ)2=a2sin2(2φ)/cos(2φ)\left(\frac{dr}{d\varphi}\right)^2 = a^2\sin^2(2\varphi)/\cos(2\varphi). Adding this to r2r^2, we get r2+(drdφ)2=a2cos(2φ)+a2sin2(2φ)/cos(2φ)=a2cos(2φ)+a2tan2(2φ)r^2 + \left(\frac{dr}{d\varphi}\right)^2 = a^2\cos(2\varphi) + a^2\sin^2(2\varphi)/\cos(2\varphi) = a^2\cos(2\varphi) + a^2\tan^2(2\varphi).
  6. Substitute rr and Simplify: We can simplify the expression for dLdL using the identity 1+tan2(φ)=sec2(φ)1 + \tan^2(\varphi) = \sec^2(\varphi). So, r2+(drdφ)2=a2cos(2φ)+a2tan2(2φ)=a2sec2(2φ)r^2 + (\frac{dr}{d\varphi})^2 = a^2\cos(2\varphi) + a^2\tan^2(2\varphi) = a^2\sec^2(2\varphi). Therefore, dL=asec2(2φ)dφdL = a\sqrt{\sec^2(2\varphi)} d\varphi.
  7. Integrate the Expression: Now we can write the integral of (x+y)(x+y) along the curve LL in polar coordinates as (rcos(φ)+rsin(φ))sec2(2φ)dφ\int (r\cos(\varphi) + r\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.
  8. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes φ=π4φ=π4(acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int_{\varphi = -\frac{\pi}{4}}^{\varphi = \frac{\pi}{4}} \left(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi)\right)\sqrt{\sec^2(2\varphi)} \, d\varphi.
  9. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.We can simplify the integral by noting that sec2(2φ)=sec(2φ)\sqrt{\sec^2(2\varphi)} = |\sec(2\varphi)|. Since we are integrating over the range where cos(2φ)\cos(2\varphi) is positive, we can drop the absolute value and write sec2(2φ)\sqrt{\sec^2(2\varphi)} as sec(2φ)\sec(2\varphi).
  10. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.We can simplify the integral by noting that sec2(2φ)=sec(2φ)\sqrt{\sec^2(2\varphi)} = |\sec(2\varphi)|. Since we are integrating over the range where cos(2φ)\cos(2\varphi) is positive, we can drop the absolute value and write sec2(2φ)\sqrt{\sec^2(2\varphi)} as sec(2φ)\sec(2\varphi).The integral simplifies to acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}. We can now integrate this expression with respect to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} d\varphi11.
  11. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.We can simplify the integral by noting that sec2(2φ)=sec(2φ)\sqrt{\sec^2(2\varphi)} = |\sec(2\varphi)|. Since we are integrating over the range where cos(2φ)\cos(2\varphi) is positive, we can drop the absolute value and write sec2(2φ)\sqrt{\sec^2(2\varphi)} as sec(2φ)\sec(2\varphi).The integral simplifies to acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}. We can now integrate this expression with respect to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi11.The integral acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi is not straightforward to integrate directly. We may need to use a substitution or simplify the integrand further. However, we notice that (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi33, so the integral simplifies to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi44.
  12. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.We can simplify the integral by noting that sec2(2φ)=sec(2φ)\sqrt{\sec^2(2\varphi)} = |\sec(2\varphi)|. Since we are integrating over the range where cos(2φ)\cos(2\varphi) is positive, we can drop the absolute value and write sec2(2φ)\sqrt{\sec^2(2\varphi)} as sec(2φ)\sec(2\varphi).The integral simplifies to acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}. We can now integrate this expression with respect to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi11.The integral acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi is not straightforward to integrate directly. We may need to use a substitution or simplify the integrand further. However, we notice that (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi33, so the integral simplifies to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi44.Integrating (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi44 from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}, we get (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi88 evaluated from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.
  13. Evaluate the Integral: Substituting r=acos(2φ)r = a\sqrt{\cos(2\varphi)}, the integral becomes (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.We can simplify the integral by noting that sec2(2φ)=sec(2φ)\sqrt{\sec^2(2\varphi)} = |\sec(2\varphi)|. Since we are integrating over the range where cos(2φ)\cos(2\varphi) is positive, we can drop the absolute value and write sec2(2φ)\sqrt{\sec^2(2\varphi)} as sec(2φ)\sec(2\varphi).The integral simplifies to acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}. We can now integrate this expression with respect to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi11.The integral acos(2φ)(cos(φ)+sin(φ))sec(2φ)dφ\int a\sqrt{\cos(2\varphi)}(\cos(\varphi) + \sin(\varphi))\sec(2\varphi) \, d\varphi is not straightforward to integrate directly. We may need to use a substitution or simplify the integrand further. However, we notice that (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi33, so the integral simplifies to (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi44.Integrating (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi44 from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}, we get (acos(2φ)cos(φ)+acos(2φ)sin(φ))sec2(2φ)dφ\int(a\sqrt{\cos(2\varphi)}\cos(\varphi) + a\sqrt{\cos(2\varphi)}\sin(\varphi))\sqrt{\sec^2(2\varphi)} \, d\varphi88 evaluated from φ=π4\varphi = -\frac{\pi}{4} to φ=π4\varphi = \frac{\pi}{4}.Evaluating the antiderivative at the bounds, we get φ=π4\varphi = -\frac{\pi}{4}11.

More problems from Find derivatives using the quotient rule I