Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dt)=y+1" and "y(0)=3". "
What is 
t when 
y=1 ?
Choose 1 answer:
(A) 
t=1
(B) 
t=-ln 2
(C) 
t=ln 2
(D) 
t=ln 4
(E) 
t=0

dydt=y+1 and y(0)=3 \frac{d y}{d t}=y+1 \text { and } y(0)=3 \text {. } \newlineWhat is t t when y=1 y=1 ?\newlineChoose 11 answer:\newline(A) t=1 t=1 \newline(B) t=ln2 t=-\ln 2 \newline(C) t=ln2 t=\ln 2 \newline(D) t=ln4 t=\ln 4 \newline(E) t=0 t=0

Full solution

Q. dydt=y+1 and y(0)=3 \frac{d y}{d t}=y+1 \text { and } y(0)=3 \text {. } \newlineWhat is t t when y=1 y=1 ?\newlineChoose 11 answer:\newline(A) t=1 t=1 \newline(B) t=ln2 t=-\ln 2 \newline(C) t=ln2 t=\ln 2 \newline(D) t=ln4 t=\ln 4 \newline(E) t=0 t=0
  1. Solve Differential Equation: First, we need to solve the differential equation dydt=y+1\frac{dy}{dt} = y + 1 with the initial condition y(0)=3y(0) = 3. We can separate variables and integrate.
  2. Separate Variables: Separate the variables: 1y+1\frac{1}{y+1} dydy = dtdt.
  3. Integrate Both Sides: Integrate both sides: 1y+1dy=dt\int\frac{1}{y+1}\, dy = \int dt.
  4. Find Constant of Integration: After integrating, we get lny+1=t+C\ln|y+1| = t + C, where CC is the constant of integration.
  5. Calculate C: Using the initial condition y(0)=3y(0) = 3, we can find CC. Plug in t=0t = 0 and y=3y = 3 into lny+1=t+C\ln|y+1| = t + C to get ln3+1=0+C\ln|3+1| = 0 + C.
  6. Obtain Particular Solution: Calculate CC: ln4=C\ln|4| = C, so C=ln4C = \ln 4.
  7. Find tt for y=1y=1: Now we have the particular solution lny+1=t+ln4\ln|y+1| = t + \ln 4.
  8. Simplify Equation: We want to find tt when y=1y = 1. Plug y=1y = 1 into lny+1=t+ln4\ln|y+1| = t + \ln 4 to get ln1+1=t+ln4\ln|1+1| = t + \ln 4.
  9. Subtract ln4\ln 4: Simplify the equation: ln2=t+ln4\ln 2 = t + \ln 4.
  10. Combine Terms: Subtract ln4\ln 4 from both sides to solve for tt: t=ln2ln4t = \ln 2 - \ln 4.
  11. Simplify Fraction: Use the property of logarithms ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) to combine the terms: t=ln(24)t = \ln\left(\frac{2}{4}\right).
  12. Recognize ln(12)\ln(\frac{1}{2}): Simplify the fraction inside the logarithm: t=ln(12)t = \ln(\frac{1}{2}).
  13. Recognize ln(12)\ln(\frac{1}{2}): Simplify the fraction inside the logarithm: t=ln(12)t = \ln(\frac{1}{2}).Recognize that ln(12)\ln(\frac{1}{2}) is the same as ln2-\ln 2: t=ln2t = -\ln 2.

More problems from Euler's method