Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)((ln(x))/(sqrtx))=

ddx(ln(x)x)= \frac{d}{d x}\left(\frac{\ln (x)}{\sqrt{x}}\right)=

Full solution

Q. ddx(ln(x)x)= \frac{d}{d x}\left(\frac{\ln (x)}{\sqrt{x}}\right)=
  1. Identify Function: We need to find the derivative of the function ln(x)x\frac{\ln(x)}{\sqrt{x}} with respect to xx. This requires the use of the quotient rule for derivatives, which states that if you have a function h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}. Here, f(x)=ln(x)f(x) = \ln(x) and g(x)=xg(x) = \sqrt{x} or x12x^{\frac{1}{2}}.
  2. Derivative of ln(x): First, we find the derivative of f(x)=ln(x)f(x) = \ln(x). The derivative of ln(x)\ln(x) with respect to xx is 1x\frac{1}{x}.
  3. Derivative of x\sqrt{x}: Next, we find the derivative of g(x)=xg(x) = \sqrt{x} or x(1/2)x^{(1/2)}. Using the power rule, the derivative of x(1/2)x^{(1/2)} is (1/2)x(1/2)(1/2)x^{(-1/2)} or 12x\frac{1}{2\sqrt{x}}.
  4. Apply Quotient Rule: Now we apply the quotient rule. We have f(x)=1xf'(x) = \frac{1}{x} and g(x)=12xg'(x) = \frac{1}{2\sqrt{x}}. Plugging these into the quotient rule formula, we get:\newlineh(x)=(1x)(x)(ln(x))(12x)(x)2h'(x) = \frac{(\frac{1}{x}) * (\sqrt{x}) - (\ln(x)) * (\frac{1}{2\sqrt{x}})}{(\sqrt{x})^2}\newlineSimplify the numerator:\newlineh(x)=x/xln(x)/(2x)xh'(x) = \frac{\sqrt{x}/x - \ln(x)/(2\sqrt{x})}{x}
  5. Simplify Numerator: Simplify the expression further by finding a common denominator for the terms in the numerator:\newlineh(x)=2ln(x)2x/xh'(x) = \frac{2 - \ln(x)}{2\sqrt{x}} / x\newlineNow, divide each term in the numerator by xx:\newlineh(x)=22x32ln(x)2x32h'(x) = \frac{2}{2x^{\frac{3}{2}}} - \frac{\ln(x)}{2x^{\frac{3}{2}}}
  6. Find Common Denominator: Simplify the terms:\newlineh(x)=1x32ln(x)2x32h'(x) = \frac{1}{x^{\frac{3}{2}}} - \frac{\ln(x)}{2x^{\frac{3}{2}}}\newlineCombine the terms over the common denominator:\newlineh(x)=2ln(x)2x32h'(x) = \frac{2 - \ln(x)}{2x^{\frac{3}{2}}}