Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(cos 140^(@)-cos 100^(@))/(sin 140^(@)-sin 100^(@))=

cos140cos100sin140sin100= \frac{\cos 140^{\circ}-\cos 100^{\circ}}{\sin 140^{\circ}-\sin 100^{\circ}}=

Full solution

Q. cos140cos100sin140sin100= \frac{\cos 140^{\circ}-\cos 100^{\circ}}{\sin 140^{\circ}-\sin 100^{\circ}}=
  1. Use Cosine Identity: Use the cosine of the supplementary angle identity.\newlineThe cosine of a supplementary angle 180°θ180° - \theta is equal to the negative cosine of the angle cos(180°θ)=cos(θ)\cos(180° - \theta) = -\cos(\theta). This means that cos(140°)=cos(40°)\cos(140°) = -\cos(40°) and cos(100°)=cos(80°)\cos(100°) = -\cos(80°).
  2. Use Sine Identity: Use the sine of the supplementary angle identity.\newlineThe sine of a supplementary angle 180°θ180° - \theta is equal to the sine of the angle sin(180°θ)=sin(θ)\sin(180° - \theta) = \sin(\theta). This means that sin(140°)=sin(40°)\sin(140°) = \sin(40°) and sin(100°)=sin(80°)\sin(100°) = \sin(80°).
  3. Substitute Values: Substitute the values from Step 11 and Step 22 into the original expression.\newlineThe expression becomes (cos(40°)+cos(80°))/(sin(40°)sin(80°))(-\cos(40°) + \cos(80°)) / (\sin(40°) - \sin(80°)).
  4. Use Co-function Identities: Use the sine and cosine co-function identities.\newlineThe co-function identities state that sin(θ)=cos(90°θ)\sin(\theta) = \cos(90° - \theta) and cos(θ)=sin(90°θ)\cos(\theta) = \sin(90° - \theta). This means that cos(80°)=sin(10°)\cos(80°) = \sin(10°) and cos(40°)=sin(50°)\cos(40°) = \sin(50°).
  5. Substitute Values: Substitute the values from Step 44 into the expression from Step 33.\newlineThe expression now becomes (sin(50)+sin(10))/(sin(40)sin(80))(-\sin(50^\circ) + \sin(10^\circ)) / (\sin(40^\circ) - \sin(80^\circ)).
  6. Use Sine Identities: Use the sine difference and sum identities.\newlineThe sine difference identity is sin(a)sin(b)=2cos(a+b2)sin(ab2)\sin(a) - \sin(b) = 2 \cdot \cos\left(\frac{a + b}{2}\right) \cdot \sin\left(\frac{a - b}{2}\right). Applying this to both the numerator and the denominator, we get:\newlineNumerator: 2cos(50°+10°2)sin(50°10°2)=2cos(30°)sin(20°)2 \cdot \cos\left(\frac{50° + 10°}{2}\right) \cdot \sin\left(\frac{50° - 10°}{2}\right) = 2 \cdot \cos(30°) \cdot \sin(20°)\newlineDenominator: 2cos(40°+80°2)sin(40°80°2)=2cos(60°)sin(20°)2 \cdot \cos\left(\frac{40° + 80°}{2}\right) \cdot \sin\left(\frac{40° - 80°}{2}\right) = 2 \cdot \cos(60°) \cdot \sin(-20°)
  7. Simplify Expression: Simplify the expression.\newlineSince sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta), the denominator becomes 2×cos(60)×sin(20)-2 \times \cos(60^\circ) \times \sin(20^\circ). The 22's and sin(20)\sin(20^\circ) terms cancel out in the numerator and denominator, leaving us with:\newlinecos(30)/cos(60)\cos(30^\circ) / -\cos(60^\circ)
  8. Calculate Cosine Values: Calculate the exact values of cos(30°)\cos(30°) and cos(60°)\cos(60°).\newlinecos(30°)=3/2\cos(30°) = \sqrt{3}/2 and cos(60°)=1/2\cos(60°) = 1/2.
  9. Substitute Values: Substitute the exact values into the simplified expression.\newlineThe final expression is (3/2)/(1/2)(\sqrt{3}/2) / -(1/2).
  10. Simplify Final Expression: Simplify the final expression.\newlineWhen we divide by a fraction, it is the same as multiplying by its reciprocal. Therefore, the final answer is:\newline(3/2)×(2/1)=3(\sqrt{3}/2) \times -(2/1) = -\sqrt{3}

More problems from Find trigonometric ratios using reference angles