Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-(a-1)(b-1)(c-1)
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
(1-a)(b-1)(1-c)
(B) 
(1-a)(1-b)(1-c)
(c) 
(a-1)(1-b)(1-c)
(D) 
(1-a)(1-b)(c-1)

(a1)(b1)(c1) -(a-1)(b-1)(c-1) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (1a)(b1)(1c) (1-a)(b-1)(1-c) \newline(B) (1a)(1b)(1c) (1-a)(1-b)(1-c) \newline(C) (a1)(1b)(1c) (a-1)(1-b)(1-c) \newline(D) (1a)(1b)(c1) (1-a)(1-b)(c-1)

Full solution

Q. (a1)(b1)(c1) -(a-1)(b-1)(c-1) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (1a)(b1)(1c) (1-a)(b-1)(1-c) \newline(B) (1a)(1b)(1c) (1-a)(1-b)(1-c) \newline(C) (a1)(1b)(1c) (a-1)(1-b)(1-c) \newline(D) (1a)(1b)(c1) (1-a)(1-b)(c-1)
  1. Distribute the negative sign: Distribute the negative sign across the expression.\newlineWe need to distribute the negative sign to each term inside the parentheses. This will change the sign of each term inside the parentheses.
  2. Apply negative sign to first term: Apply the negative sign to the first term (a1)(a-1). The negative sign will change (a1)(a-1) to (1a)(1-a).
  3. Apply negative sign to second term: Apply the negative sign to the second term (b1)(b-1). The negative sign will change (b1)(b-1) to (1b)(1-b).
  4. Apply negative sign to third term: Apply the negative sign to the third term (c1)(c-1). The negative sign will change (c1)(c-1) to (1c)(1-c).
  5. Combine the results: Combine the results from steps 22, 33, and 44. After applying the negative sign to each term, we get (1a)(1b)(1c)(1-a)(1-b)(1-c).
  6. Match with given options: Match the resulting expression with the given options.\newlineThe expression (1a)(1b)(1c)(1-a)(1-b)(1-c) matches option (B).

More problems from Domain and range