Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-6. Non-GDC
Let 
f(x)=(2-3x^(5))/(2x^(3)),x inR,x!=0.
(a) The graph of 
y=f(x) has a local maximum at A. Find the coordinates of A.

6-6. Non-GDC\newlineLet f(x)=23x52x3,xR,x0 f(x)=\frac{2-3 x^{5}}{2 x^{3}}, x \in \mathbb{R}, x \neq 0 .\newline(a) The graph of y=f(x) y=f(x) has a local maximum at A. Find the coordinates of A.

Full solution

Q. 6-6. Non-GDC\newlineLet f(x)=23x52x3,xR,x0 f(x)=\frac{2-3 x^{5}}{2 x^{3}}, x \in \mathbb{R}, x \neq 0 .\newline(a) The graph of y=f(x) y=f(x) has a local maximum at A. Find the coordinates of A.
  1. Find Derivative and Simplify: To find the local maximum, we need to find the derivative of f(x)f(x) and set it equal to zero.\newlinef(x)=ddx[(23x5)(2x3)]f'(x) = \frac{d}{dx} \left[\frac{(2 - 3x^5)}{(2x^3)}\right]\newlineUsing the quotient rule: (vuuv)v2\frac{(v'u - uv')}{v^2}\newlineLet u=(23x5)u = (2 - 3x^5) and v=2x3v = 2x^3\newlineu=ddx(23x5)=15x4u' = \frac{d}{dx} (2 - 3x^5) = -15x^4\newlinev=ddx(2x3)=6x2v' = \frac{d}{dx} (2x^3) = 6x^2\newlinef(x)=[(2x3)(15x4)(23x5)(6x2)](2x3)2f'(x) = \frac{[(2x^3)(-15x^4) - (2 - 3x^5)(6x^2)]}{(2x^3)^2}
  2. Set Derivative Equal to Zero: Simplify the derivative.\newlinef(x)=30x7(12x218x7)4x6f'(x) = \frac{-30x^7 - (12x^2 - 18x^7)}{4x^6}\newlinef(x)=30x712x2+18x74x6f'(x) = \frac{-30x^7 - 12x^2 + 18x^7}{4x^6}\newlinef(x)=12x712x24x6f'(x) = \frac{-12x^7 - 12x^2}{4x^6}\newlinef(x)=3x74x63x24x6f'(x) = \frac{-3x^7}{4x^6} - \frac{3x^2}{4x^6}\newlinef(x)=3x434x4f'(x) = -\frac{3x}{4} - \frac{3}{4x^4}
  3. Solve for Critical Points: Set the derivative equal to zero to find critical points.\newline3x434x4=0-\frac{3x}{4} - \frac{3}{4}x^4 = 0\newlineMultiply through by 4x44x^4 to clear the fraction.\newline3x53=0-3x^5 - 3 = 0

More problems from Evaluate rational exponents