Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3 pts) For the function 
f(x)={[2x," if "x < 1],[-4x," if "x >= 1]:}, evaluate the left and right limits using the table shown below:






x

2x

x

-4x


0.9
1.8
1.1
-4.4


0.99
1.98
1.01
-4.04


0.999
1.998
1.001
-4.004


0.9999
1.9998
1.0001
-4.0004


0.99999
1.99998
1.00001
-4.00004




a) 
lim_(x rarr1^(-))f(x)
b) 
lim_(x rarr1^(+))f(x)

11. (33 pts) For the function f(x)={2x if x<14x if x1 f(x)=\left\{\begin{array}{cl}2 x & \text { if } x<1 \\ -4 x & \text { if } x \geq 1\end{array}\right. , evaluate the left and right limits using the table shown below:\newline\begin{tabular}{cccl}\newlinex x & 2x 2 x & x x & 4x -4 x \\\newline\hline 00.99 & 11.88 & 11.11 & 4-4.44 \\\newline\hline 00.9999 & 11.9898 & 11.0101 & 4-4.0404 \\\newline\hline 00.999999 & 11.998998 & 11.001001 & 4-4.004004 \\\newline\hline 00.99999999 & 11.99989998 & 11.00010001 & 4-4.00040004 \\\newline\hline 00.9999999999 & 11.9999899998 & 11.0000100001 & 4-4.0000400004 \\\newline\hline\newline\end{tabular}\newlinea) limx1f(x) \lim _{x \rightarrow 1^{-}} f(x) \newlineb) limx1+f(x) \lim _{x \rightarrow 1^{+}} f(x)

Full solution

Q. 11. (33 pts) For the function f(x)={2x if x<14x if x1 f(x)=\left\{\begin{array}{cl}2 x & \text { if } x<1 \\ -4 x & \text { if } x \geq 1\end{array}\right. , evaluate the left and right limits using the table shown below:\newline\begin{tabular}{cccl}\newlinex x & 2x 2 x & x x & 4x -4 x \\\newline\hline 00.99 & 11.88 & 11.11 & 4-4.44 \\\newline\hline 00.9999 & 11.9898 & 11.0101 & 4-4.0404 \\\newline\hline 00.999999 & 11.998998 & 11.001001 & 4-4.004004 \\\newline\hline 00.99999999 & 11.99989998 & 11.00010001 & 4-4.00040004 \\\newline\hline 00.9999999999 & 11.9999899998 & 11.0000100001 & 4-4.0000400004 \\\newline\hline\newline\end{tabular}\newlinea) limx1f(x) \lim _{x \rightarrow 1^{-}} f(x) \newlineb) limx1+f(x) \lim _{x \rightarrow 1^{+}} f(x)
  1. Find Left-Hand Limit: To find the left-hand limit as xx approaches 11, we look at the values of f(x)f(x) when xx is just less than 11. According to the function definition, for x<1x < 1, f(x)=2xf(x) = 2x. We will use the values from the table to evaluate the limit.
  2. Evaluate Left-Hand Limit: Looking at the table, as xx approaches 11 from the left (x<1x < 1), the values of f(x)=2xf(x) = 2x are getting closer to 22. The sequence of xx values (0.90.9, 0.990.99, 0.9990.999, 0.99990.9999, 1100) is approaching 11, and the corresponding 1122 values (1133, 1144, 1155, 1166, 1177) are approaching 22.
  3. Find Right-Hand Limit: Therefore, the left-hand limit of f(x)f(x) as xx approaches 11 is 22. This is because as xx gets closer to 11 from the left, 2x2x gets closer to 22.
  4. Evaluate Right-Hand Limit: To find the right-hand limit as xx approaches 11, we look at the values of f(x)f(x) when xx is just greater than 11. According to the function definition, for x1x \geq 1, f(x)=4xf(x) = -4x. We will use the values from the table to evaluate the limit.
  5. Evaluate Right-Hand Limit: To find the right-hand limit as xx approaches 11, we look at the values of f(x)f(x) when xx is just greater than 11. According to the function definition, for x1x \geq 1, f(x)=4xf(x) = -4x. We will use the values from the table to evaluate the limit.Looking at the table, as xx approaches 11 from the right (x>1x > 1), the values of f(x)=4xf(x) = -4x are getting closer to 1111. The sequence of xx values (1133, 1144, 1155, 1166, 1177) is approaching 11, and the corresponding f(x)f(x) values (f(x)f(x)00, f(x)f(x)11, f(x)f(x)22, f(x)f(x)33, f(x)f(x)44) are approaching 1111.
  6. Evaluate Right-Hand Limit: To find the right-hand limit as xx approaches 11, we look at the values of f(x)f(x) when xx is just greater than 11. According to the function definition, for x1x \geq 1, f(x)=4xf(x) = -4x. We will use the values from the table to evaluate the limit.Looking at the table, as xx approaches 11 from the right (x>1x > 1), the values of f(x)=4xf(x) = -4x are getting closer to 1111. The sequence of xx values (1133, 1144, 1155, 1166, 1177) is approaching 11, and the corresponding f(x)f(x) values (f(x)f(x)00, f(x)f(x)11, f(x)f(x)22, f(x)f(x)33, f(x)f(x)44) are approaching 1111.Therefore, the right-hand limit of f(x)f(x) as xx approaches 11 is 1111. This is because as xx gets closer to 11 from the right, xx22 gets closer to 1111.

More problems from Pascal's triangle and the Binomial Theorem