Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2tan(x))/(1+tan^(2)(x))=sen(2x)

2tan(x)1+tan2(x)=sen(2x) \frac{2 \tan (x)}{1+\tan ^{2}(x)}=\operatorname{sen}(2 x)

Full solution

Q. 2tan(x)1+tan2(x)=sen(2x) \frac{2 \tan (x)}{1+\tan ^{2}(x)}=\operatorname{sen}(2 x)
  1. Apply tan identity: Use the identity tan(2x)=2tan(x)1tan2(x)\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} and the Pythagorean identity tan2(x)+1=sec2(x)\tan^2(x) + 1 = \sec^2(x).
  2. Use Pythagorean identity: Rewrite the given expression using the Pythagorean identity: 2tan(x)sec2(x)\frac{2\tan(x)}{\sec^2(x)}.
  3. Rewrite using secant: Since sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}, rewrite sec2(x)\sec^2(x) as 1cos2(x)\frac{1}{\cos^2(x)}.
  4. Simplify expression: Now the expression is (2tan(x))cos2(x)(2\tan(x)) \cdot \cos^2(x).
  5. Use sin identity: Use the identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x) and divide both sides by cos(x)\cos(x) to get tan(x)=sin(x)cos(x)\tan(x) = \frac{\sin(x)}{\cos(x)}.
  6. Substitute tan: Substitute tan(x)\tan(x) with sin(x)cos(x)\frac{\sin(x)}{\cos(x)} in the expression: 2(sin(x)cos(x))cos2(x)2\left(\frac{\sin(x)}{\cos(x)}\right) \cdot \cos^2(x).
  7. Final simplification: Simplify the expression: 2sin(x)cos(x)2\sin(x)\cos(x).
  8. Recognize pattern: Recognize that 2sin(x)cos(x)2\sin(x)\cos(x) is the right side of the double angle identity for sine, which is sin(2x)\sin(2x).
  9. Conclude identity: Conclude that (2tan(x))/(1+tan2(x))(2\tan(x))/(1+\tan^{2}(x)) simplifies to sin(2x)\sin(2x), proving the identity.

More problems from Evaluate integers raised to rational exponents